ACADEMIC REGULATIONS (R18PG) COURSE STRUCTURE AND DETAILED SYLLABUS For

M.Tech.- Regular Two Year Post Graduate Degree Programe (Effective from 2018-19)

MASTER OF TECHNOLOGY IN POWER SYSTEMS

KANDULA SRINIVASA REDDY MEMORIAL COLLEGE OF ENGINEERING (UGC-Autonomous) Kadapa 516003, A.P

(Approved by AICTE, Affiliated to JNTUA, Ananthapuramu, Accredited by NAAC)

(An ISO 14001:2004 & 9001: 2015 Certified Institution)

E-mail: principal@ksrmce.ac.in

Website: <u>www.ksrmce.ac.in</u>

VISION AND MISSION OF THE INSTITUTE VISION

To evolve as centre of repute for providing quality academic programs amalgamated with creative learning and research excellence to produce graduates with leadership qualities, ethical and human values to serve the nation.

MISSION

M-1: To provide high quality education with enriched curriculum blended with impactful teaching-learning practices.

M-2: To promote research, entrepreneurship and innovation through industry collaborations.

M-3: To produce highly competent professional leaders for contributing to Socio-economic development of region and the nation.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

VISION

To emerge as a department of excellence in the domain of Electrical and Electronics Engineering producing globally competent engineers with research acumen having moral and social values.

MISSION

M-1: To offer education with skill-based curriculum through innovative pedagogy, enabling the students to engage in lifelong learning.

M-2: To establish industry interactions for creating research-oriented culture to invoke the desire among the students for pursuing successful career.

M-3: To maintain sustainable environment of learning in which students acquire knowledge and imbibed with social and ethical values.

PROGRAM EDUCATIONAL OBJECTIVES

Program Educational Objectives of the Electrical and Electronics Engineering provides the following wide aspects in connection with the Vision and Mission of the department.

PEO1: To pursue higher studies or be employed in Electrical and Electronics Engineering or relevant disciplines.

PE02: To analyze real life problems and design Electrical and Electronics Engineering systems with appropriate solutions that are technically sound, economically feasible and socially acceptable.

PEO3: To exhibit professionalism, ethical attitude, communication skills, team work in their profession and adapt to current trends by engaging in lifelong learning.

PROGRAM OUTCOMES

PO1 - Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 - Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 - **Design/Development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 - Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 - Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6 - The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7 - Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 - Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.

PO9 - Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 - Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 - Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 - Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

PSO1: Able to apply the knowledge of Science, Mathematics; Electrical and Electronics Engineering fundamentals to solve complex problems in Electrical Machines, Control Systems, Power Systems and Power Electronics.

PSO2: Able to analyze the performance of Electrical Machines, Power Systems and

Control Systems.

PSO3: Able to apply the knowledge of ethical and management principles required to

work on a team as well as to lead a team.

KSRM College of Engineering, Kadapa-516003, AP

Regulations, Curriculum and Syllabus for M. Tech

1.0	Nomenclature	. 1
2.0	Short Title And Application	. 2
3.0	Suspension And Amendment Of Rules	. 2
4.0	Requirements For Admission	. 2
5.0	Structure Of The M. Tech Course	. 2
6.0	Registration And Enrolment	. 3
7.0	Assessment Procedure – Internal Tests And End Examinations	. 3
8.0	Method Of Assigning Letter Grades And Grade Points	. 5
9.0	Requirements For Completing Subjects	.6
10.0	Requirements For Taking End Examinations	.6
11.0	Revaluation Of End Examination Scripts	.7
12.0	Supplementary End Examinations	.7
13.0	Requirements For Award Of M. Tech Degree	.7
14.0	Transitory Regulations	. 8

Curriculum and Syllabus

KSRM College of Engineering, Kadapa-516003, AP

Regulations for PG Programs in Engineering (R18 PG)

1.0 Nomenclature

- 1.1 *Academic Term*: Extent of time during which academic instructions are initiated and completed
- 1.2 *Academic Year*: Academic Term of, approximately, one year duration that usually starts in June/July and ends in April/May next
- 1.3 Semester: Either of two Academic Terms that make up an Academic Year
- 1.4 Major: A specific field of study
- 1.5 Minor: An area outside of, or complementary to, a Major
- 1.6 *Subject*: An area of knowledge that is studied as part of a Course
- 1.7 Core: A subject that is mandatory for a Major course of study
- 1.8 *Elective*: A subject that is selected for study to suit one's individual needs
- 1.9 *Audit Subject*: A subject that is studied to meet certain requirements but has no credits assigned to it
- 1.10 *Humanities*: Subjects that describe and interpret human achievements, problems and historical changes at individual and societal levels covering the disciplines of literature, history, and philosophy
- 1.11 *Social Sciences*: Subjects that describe the mental and behavioural activities of individuals, groups, organizations, institutions, and nations covering the disciplines of anthropology, economics, linguistics, political science, and psychology
- 1.12 *Exam*: A test to measure one's progress, knowledge, or ability in a subject
- 1.13 Credit: A numerical weight given to a subject
- 1.14 *Grade*: A numerical or alphabetic designation measuring the level of achievement in an exam
- 1.15 *Attendance*: Physical presence of oneself in a classroom/laboratory for purpose of a scheduled academic instruction
- 1.16 Course: A series of subjects that constitute a Major field of study
- 1.17 *Branch*: Same as Course
- 1.18 Program: Same as Course
- 1.19 Specialization: Same as branch
- 1.20 Degree: An academic title conferred to honour distinguished achievement

2.0 Short Title and Application

- 2.1 These rules and regulations may be called as R18 PG and come into force from Academic Year 2018-19 and exist until superseded by new regulations
- 2.2 These rules and regulations are applicable to all post graduate courses in engineering and technology leading to Master's Degree in Technology (M. Tech)
- 2.3 The Specializations offered, at present, are:
 - 2.3.1 Geotechnical Engineering
 - 2.3.2 Power Systems
 - 2.3.3 CAD & CAM
 - 2.3.4 Digital Electronics and Communication Systems
 - 2.3.5 Computer Science and Engineering
- 2.4 The Institute may offer new Specializations in future to which these rules and regulations will be applicable

3.0 Suspension and Amendment of Rules

- 3.1 Academic Council has the authority to suspend a rule temporarily
- 3.2 Academic Council has the authority to amend a rule
- 3.3 For affirmative action on any suspension or amendment of a rule, an affirmative vote of three-fifths of the members present and voting shall be required in Academic Council

4.0 Requirements for Admission

- 4.1 At present, admissions into first semester of various Specializations are governed by Government and the Affiliating University. The eligibility criteria and procedure for admission are prescribed by Government and Affiliating University
- 4.2 A student is not allowed change of Specialization after admission
- 4.3 A student must fulfil medical standards required for admission
- 4.4 The selected students are admitted into first semester after payment of the prescribed fees

5.0 Structure of the M. Tech course

- 5.1 *Duration*: The duration of M. Tech degree course is four semesters
- 5.2 *Working Days*: Calendar for any semester shall be announced at least four weeks before its commencement. Minimum number of working days is 90 per semester
- 5.3 *Curriculum*: Each Specialization shall have core, elective and audit subjects. The curriculum for each Specialization shall be approved by its corresponding Board of Studies and then by the Academic Council
- 5.4 *Credits*: All subjects that are assessed for marks have credits assigned to them. The credits assigned to subjects shall be given in curriculum. The total number of credits for entire course is 68 for all Specializations. The distribution of total credits semester-wise is given in Table 1

Semester	Total Credits
First Semester	18
Second Semester	18
Third Semester	16
Fourth Semester	16
Total for entire course	68

- 5.5 The curriculum and syllabus is given in Annexure-1 and Annexure-2 respectively
- 5.6 Responsibility and Advising: It is the responsibility of the student to understand and know the regulations and requirements to earn the degree. Each student admitted in to the degree programs is assigned to a Faculty Advisor who assists the student in designing an effective program of study. Students should consult their Faculty Advisors for selection of electives and for general advice on academic program

6.0 Registration and Enrolment

- 6.1 Prior to opening of each semester, every student shall register for all the creditbearing and audit subjects listed in curriculum of the term. Excepting first semester, the registration for a semester shall be done during a specified week after end examinations of previous semester. In first semester, the registration shall be done within six working days from date of opening. Recommendation of Faculty Advisor is needed for registration
- 6.2 Late registration will be permitted with a fine, decided from time to time, up to six working days from the last date specified for registration
- 6.3 A student will be eligible for registration for a semester if she or he i) is promoted to that semester, ii) has cleared all fees to the Institute, library and hostel of previous term, and iii) is not disqualified for registration by a disciplinary action of the Institute
- 6.4 A student will be enrolled and allowed to attend the classes on successful registration and payment of necessary fees to Institution, library, and hostel
- 6.5 Registration and enrolment will be controlled by the Office of the Controller of Examinations

7.0 Assessment Procedure – Internal Tests and End Examinations

- 7.1 Performance of students in all subjects is assessed continuously through internal assessment tests and an End examination
- 7.2 Allocation of internal assessment and End examination marks
 - 7.2.1 For theory subjects, the allocation is 40 marks for internal assessment and 60 marks for End examination totalling 100 marks
 - 7.2.2 For laboratory/project work subjects, the allocation is 50 marks for internal assessment and 50 marks for End examination totalling 100 marks

- 7.2.3 For mini-project/mini-project with seminar total 100 marks are allocated for internal assessment. There shall be no end examination for this mini-project
- 7.2.4 For all audit subjects the allocation is 40 marks for internal assessment and no allocation for End examination
- 7.3 Internal Assessment Examinations
 - 7.3.1 Internal assessment means performance evaluation of students by faculty members who teach the subjects
 - 7.3.2 For theory subjects, including audit subjects, the internal assessment shall be done by midterm tests. For each subject, two midterm tests will be conducted for 40 marks each and the internal assessment mark is the better of two marks. If any student abstains for any midterm test, she or he will be awarded zero marks for that midterm test.
 - 7.3.3 For laboratory/practical subjects, the internal assessment will be based on regular laboratory work over full term. The assessment will be done by the faculty concerned. The students shall be informed sufficiently early of the procedure to be followed for internal assessment
 - 7.3.4 For subjects like seminar, project-work, industrial training, and comprehensive viva-voce, the internal assessment will be done by a concerned Department Committee consisting of two senior faculty members and faculty guide of concerned student. The assessment procedure will be informed sufficiently early to the students
- 7.4 End examinations
 - 7.4.1 End examinations shall be conducted after completion of coursework in each term
 - 7.4.2 The question papers for theory subjects shall be set by faculty members outside of the Institute. The external faculty members for question paper setting will be selected by the Principal
 - 7.4.3 Evaluation of answer scripts shall be done by faculty members from outside of the Institute selected by the Principal
 - 7.4.4 For laboratory subjects, end examination shall be conducted by a committee consisting of two internal examiners. One examiner shall be recommended by Head of Department of concerned Major, and the other examiner shall be appointed by the Principal
 - 7.4.5 For project work viva-voce, End examination shall be conducted by a committee consisting of one internal examiner, one external examiner, and the concerned guide of the student. Internal examiner shall be appointed by Head of Department of concerned Major, and the external examiner shall be appointed by the Principal
 - 7.4.6 If a student abstains from End examination of any subject, for any reason, she or he shall be awarded zero marks in that subject
 - 7.4.7 There is no end examination for audit subjects.

8.0 Method of Assigning Letter Grades and Grade Points

- 8.1 For all credit-bearing subjects, performance of a student in a subject is indicated by a letter grade that corresponds to absolute marks earned in that subject. Each letter grade is assigned a numeric Grade Point that is used to compute Grade Point Average on a scale of 0 to 10
- 8.2 Performance of a student in both internal assessment and End examination will be considered for awarding grades for credit bearing subjects. Total marks earned in a subject is the sum of marks obtained in internal and End examinations in that subject
- 8.3 Pass grade A+ to D- is assigned to a subject based on total marks earned in that subject provided that a student earns at least i) 35% of marks in End examination marks and ii) 40% of marks in internal and End examination marks put together; otherwise fail grade F will be assigned to that subject
- 8.4 Grade I will be assigned to a subject if a disciplinary action is pending and is not resolved before publication of results. Office of Controller of Examinations shall resolve the pending disciplinary action within six working days from the date of publication of results and change the grade to any of A+ to D- or F
- 8.5 Grade X will be assigned to a subject if a student abstains for End examination of that subject
- 8.6 The absolute marks and corresponding letter grade and grade points are given in Table2

Absolute Marks	Letter Grade	Grade Points	Remark
95-100	A+	10.0	Pass
90-94	А	9.5	Pass
85-89	A-	9.0	Pass
80-84	B+	8.5	Pass
75-79	В	8.0	Pass
70-74	B-	7.5	Pass
65-69	C+	7.0	Pass
60-64	С	6.5	Pass
55-59	C-	6.0	Pass
50-54	D+	5.5	Pass
0-49	F	0.0	Fail
-	Ι	0.0	Result Withheld
-	Х	0.0	Absent for End Exam

Table 2 Letter Grades and Grade Points

8.7 *SGPA*: Semester Grade Point Average indicates the performance of a student in all credit-bearing subjects of a term. SGPA is calculated as the weighted average

of Grade Points of all subjects of the term with corresponding credits of subjects as weights. Audit subjects are not considered for SGPA calculation

- 8.8 *CGPA*: Cumulative Grade Point Average indicates the performance of a student in all terms up to and including the current term under consideration. CGPA is calculated as the weighted average of SGPAs with total credits in each term as the weights
- 8.9 Grade Card: All students shall be issued Grade Cards after the publication of results of a term. Grade Card is a statement of performance of a student in a term. It contains information about each registered subject: type of subject, allocated credits, and letter grade earned. SGPA and CGPA will also be indicated

9.0 Requirements for Completing Subjects

- 9.1 A student shall complete all credit-bearing and audit subjects successfully to be eligible for award of degree
- 9.2 *Credit-bearing subjects*: A student is considered to have completed a creditbearing subject successfully and earned credits if she or he obtains a pass grade from A+ to D- in that subject. If a student receives fail grade F or X in any subject, she or he must register for supplementary End examination for that subject as and when opportunity arises and improve grade to pass grade
- 9.3 *Audit subjects*: A student is considered to have successfully completed an audit subject if she or he earns at least 40% of marks in internal assessment marks. A student may request for makeup tests to satisfy this requirement by paying requisite fee

10.0 Requirements for taking End Examinations

- 10.1 A student is eligible to take regular End Examinations of current semester if she or he full fills the attendance requirement
- 10.2 A student shall be promoted from current term to succeeding term on satisfying the attendance requirement
- 10.3 A student shall complete all credit-bearing and audit subjects successfully before taking End examination for project viva-voce
- 10.4 Attendance Requirement
 - 10.4.1 Attendance of students shall be recorded for credit-bearing and audit subjects as per the workload indicated in curriculum
 - 10.4.2 Total class-periods conducted shall be reckoned from beginning to end of a term as published in academic calendar
 - 10.4.3 Aggregate Percentage of Attendance is calculated using total number of class-periods attended as numerator and total number of class-periods conducted for the concerned subject as the denominator
 - 10.4.4 A minimum aggregate attendance of 75% is required for promotion to succeeding term
 - 10.4.5 A student can appeal to Academic Council for condoning deficiency in aggregate attendance if she or he gets 65% or more aggregate attendance presenting a valid reason for deficiency. Such a student will be granted

promotion if Academic Council pardons the deficiency. Academic Council has the right to reject the appeal if it is not satisfied with the performance of the student or the reason cited for deficiency of the attendance

- 10.4.6 A student earning less than 65% aggregate attendance will be denied promotion. A student who is not promoted on basis of attendance shall be removed from the rolls and shall register for the same term when opportunity arises. The current term record of the student is cancelled automatically
- 10.5 A student can forego promotion and opt to repeat the current term on written request. Recommendation of the concerned Faculty Advisor is required for cancellation of promotion. This option shall be exercised before the commencement of the End examinations of the current term

11.0 Revaluation of End Examination Scripts

- 11.1 Revaluation of End Examination scripts is allowed for theory subjects only by paying requisite fee
- 11.2 A Procedure for Revaluation: The script will be revaluated by an examiner appointed by the Principal. The maximum of revaluation and regular end examination marks will be awarded for that subject
- 11.3 A student can apply for revaluation in a subject only once

12.0 Supplementary End Examinations

- 12.1 Students are eligible to take Supplementary examinations in subjects with fail grade F or X only
- 12.2 Supplementary examinations for even semester subjects will be conducted with regular examinations of odd semester subjects and vice versa
- 12.3 A student will be allowed to improve grade in any theory subject provided she or he has completed coursework of all terms but before award of provisional/final degree

13.0 Requirements for Award of M. Tech degree

- 13.1 Time Limit for completion of requirements for award of degree is four calendar years from the date of admission. A student who could not complete all the requirements in this time limit shall forego admission and will be removed from the rolls of the Institute
- 13.2 A student shall be eligible for award of degree provided she or he has:
 - 13.2.1 Registered and successfully completed all required credit-bearing and audit subjects with a total of 68 credits
 - 13.2.2 Secured a CGPA of 4.5 or more
 - 13.2.3 Cleared all dues to the Institute, library and hostel
 - 13.2.4 No disciplinary action is pending against her or him
 - 13.2.5 Satisfied any other stipulation of the affiliating University

13.3 Award of Class: Each student will be given class in degree based on CGPA as given in Table 3

Table 3 Class of Degree

Class of Degree	Range of CGPA
Second Class	>= 5.5 but <6.5
First Class	>= 6.5 but <7.5
First Class with Distinction	>= 7.5

13.4 Consolidated Grade Card and Degree will issued under the seal of affiliating University.

14.0 Transitory Regulations

14.1 A student who initially joins the Institute in a previous Regulation and has to rejoin in an academic-term of the present Regulations, due to any reason, shall be bound by the rules of the current Regulations. Board of Studies of the concerned Major will specify, extra or otherwise, academic coursework to be undertaken by such students who rejoin the current Regulations

COURSE STRUCTURE

M.Tech. (Power Systems)-R18 Course Structure

Annexure-1 Curriculum

S. No.	C/PE/A	Course Code	Course Name	L	Т	Р	IM	EM	CR
1	C 1	1852101	Power System Analysis	3	0	0	40	60	3
2	C 2	1852102	Power System Dynamics - I	3	0	0	40	60	3
		1852103	Renewable Energy System	3	0	0	40	60	3
3	PE1	1852104	Smart grids	3	0	0	40	60	3
		1852105	Wind and Solar Systems	3	0	0	40	60	3
		1852106	Electrical Power Distribution System	3	0	0	40	60	3
4	PE 2	1852107	Mathematical Methods for Power Engineering		0	0	40	60	3
		1852108	Electric and Hybrid Vehicles	3	0	0	40	60	3
5		1800109	Research Methodology and IPR	2	0	0	40	60	2
6	Lab 1	1852110	Power System Lab - I	0	0	3	50	50	2
7	Lab 2	1852111	Power System Simulation Lab-I	0	0	3	50	50	2
8	A 1		Audit Course I	2	0	0	40	-	0
			Total	14	0	8	350	400	18

I-SEMESTER

* C - Course * PE - Professional Elective * A - Audit Course

S. No.	C/PE/A	Course Code	Course Name	L	Т	Р	IM	EM	CR
1	C 3	1852201	Digital Protection of Power System	3	0	0	40	60	3
2	C 4	1852202	Power System Dynamics - II	3	0	0	40	60	3
		1852203	Restructured Power Systems	3	0	0	40	60	3
3	PE 3	1852204	Energy Auditing and Management	3	0	0	40	60	3
		1852205	Power Apparatus Design	3	0	0	40	60	3
		1852206	SCADA System and Applications	3	0	0	40	60	3
4	PE 4	1852207	Power Quality	3	0	0	40	60	3
		1852208	AI Techniques	3	0	0	40	60	3
5	C 5	1852209	Mini Project	0	0	4	100	-	2
6	Lab 3	1852210	Power System Lab -II	0	0	4	50	50	2
7	Lab 4	1852211	Power Systems Simulation Lab -II	0	0	4	50	50	2
8	A II		Audit Course II	2	0	0	40	-	-
			Total	12	0	12	410	340	18

II SEMESTER

r	1	1		1	1	1			
S. No.	C/PE/A	Course Code	Course Name	L	Т	Р	IM	EM	CR
		1852301	Power System Transients	3	0	0	40	60	3
1	PE 5	1852302	Industrial Load Modeling and Control	3	0	0	40	60	3
		1852303	Dynamics Of Linear Systems	3	0	0	40	60	3
		1871304	Business Analytics	3	0	0	40	60	3
		1871305	Industrial Safety	3	0	0	40	60	3
	OF	1871306	Operations Research	3	0	0	40	60	3
2	OE	1871307	Cost Management of Engineering Projects	3	0	0	40	60	3
		1871308	Composite Materials	3	0	0	40	60	3
		1871309	Waste to Energy	3	0	0	40	60	3
3	Major Project	1852310	Phase - I Dissertation	0	0	20	100	-	10
			Total	6	0	20	180	120	16

III SEMESTER

IV SEMESTER

S. No.	Course	Course Code	Course Name	L	Т	Р	IM	EM	C R
1	Major Project	1852401	Phase - II Dissertation	0	0	32	50	50	16
			Total	0	0	32	50	50	16

Audit course I & II

S.	Course	Course Name
No.	Code	
1	1870A01	English for Research Paper Writing
2	1870A02	Disaster Management
3	1870A03	Sanskrit for Technical Knowledge
4	1870A04	Value Education
5	1870A05	Constitution of India
6	1870A06	Pedagogy Studies
7	1870A07	Stress Management by Yoga
8	1870A08	Personality Development through Life
		Enlightenment Skills

M.TECH.-I- SEMESTER SYLLABUS

Course	Title	POWE	R SYST	TEM AN	JALYS	SIS	M.Tech PS I Sem					
Course	Code	Category	Но	urs/We	ek	Credits	Maximum Marks					
1852	101	CORE-1	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			3	0	0	3	40	60	100			
	Mid	Exam Duratio	n: 2 Ho	urs		E	nd Exam Dura	tion: 3H	S			
Course	Objecti	ves:										
	• Stu	dy various metl	nods of l	oad flow	v and th	neir advant	ages and disady	vantages.				
	• Unc	lerstand how to	analyze	various	types	of faults in	power system.					
	• Unc	lerstand power	· system	securit	y conc	epts and	study the meth	nods to	rank the			
	con	tingencies.	•		•	1	•					
	• Unc	lerstand need o	f state es	stimatio	n and st	tudy simpl	e algorithms for	r state esti	imation.			
		dy voltage insta					C					
Course			• 1			course, tl	he students wil	l be able	to			
CO 1				-		,	he data using v					
		ow and fault cu	U 1			0	8					
CO 2		various conting		-		ir severity						
CO 3				_			tities viz. powe	er flow.	voltages.			
		CB status etc	0 r	8-		1	· · · r · · ·	- · · · ·				
CO 4	÷ .	te closeness to	voltage	collapse	and ca	lculate PV	⁷ curves using					
		uation power fl	0	rr			8					

<u>UNIT-I</u>

Load flow: Overview of Newton-Raphson, Gauss-Seidel, Fast-decoupled methods, convergence properties, sparsity techniques. Control of Voltage profile: Control by generators- Control by VAR generators – control by transformers. Load flow under power electronic control: AC-DC load flow – Converter model – Solution technique – Sequential method.

<u>UNIT-II</u>

Fault Analysis: Symmetrical-internal voltages of loaded machines under fault conditions-Short circuit of a synchronous machine – symmetrical components- sequence networks of synchronous machine, transmission line, transformer – unsymmetrical faults -open conductor faults.

<u>UNIT-III</u>

Security Analysis: Factors affecting power system security- contingency analysis – over view of security analysis – Linear sensitivity factors: Generation shift factors, line outage distribution factors – AC power flow methods – Contingency selection.

UNIT-IV

State Estimation: Introduction to State Estimation, Least Squares Estimation and Weighted Least Squares Estimation, State Estimation in AC Network, Orthogonal Decomposition, Detection and Identification of Bad measurements, Network Observability and Pseudo – measurements.

<u>UNIT-V</u>

Voltage Stability: Basic concepts related to voltage stability- definition - classification – voltage collapse – P-V & Q-V curve – voltage stability analysis: – prevention of voltage collapse.

Text Books:

- 1. J.J. Grainger & W.D.Stevenson, "Power System Analysis", McGraw Hill, 2003.
- 2. A.J. Wood, "Power Generation, Operation and Control", John Wiley, 1994.
- 3. I.J. Nagrath, D.P. Kothari, "Modern Power System Analysis", TMH Publications.

Course 7	litle	POWER	SYSTE	M DYN	JAMIC	CS - I	M.Tech PS I Sem				
Course C	Code	Category	Hours/Week Credits			Maximum Marks					
1852102		CORE-2	L	Т	Γ P C Internal		Continuous Internal Assessment	End Exams	Total		
			3	0	0	3	40	60	100		
	Mid 1	Exam Duration	n: 2 Ho	urs		E	nd Exam Dura	tion: 3Hı	ſS		
Course O	bjecti	ves:									
•	Stu	dents will be a	ble to:	Study of	f syster	m dynamie	es and its phys	ical interp	pretation,		
	Dev	elopment of	mathem	atical r	nodels	for sync	hronous mach	ine, Mod	leling of		
	indı	action motor.				•			C		
Course O	utcon	nes: On success	sful con	pletion	of this	s course, tl	he students wil	l be able	to		
CO 1	Unders	stand the model	ling of s	synchroi	nous m	achine in d	letail.				
CO 2											
CO 3	Carry	out stability and	lysis wi	ith and v	vithout	power sys	tem stabilizer.				
CO 4	Unders	stand the load n	nodellin	g in pov	ver syst	em.					

<u>UNIT-I</u>

Modeling of Synchronous Machine: Synchronous machine – Park's Transformationanalysis of steady state performance, per - unit quantities-Equivalent circuit of synchronous machine.

<u>UNIT-II</u>

Steady State Analysis: Voltage, Current and Flux Linkage relationships, Steady state equivalent circuit, Formulation of State Space Model.

UNIT-III

Sub-Transient and transient inductance and Time Constants, Synchronous Machines Simplified model.

UNIT-IV

Excitation System: Effects of Excitation system, PSS-Block Diagram, System State matrices

(Type Systems).

<u>UNIT-V</u>

Modeling of Induction Motors: Basic Equations, d-q Transformations, Steady State Characteristics, Equivalent Circuits, Effect of rotor resistance, Modelling of Prime Movers.

Text Books:

- 1. P.M. Anderson & A.A. Fouad, "Power System Control and Stability", IEEE Press.
- 2. Power system Stability and Control, P. Kundur, TMH.
- 3. Power system Analysis and Design, William D Stevenson, John J Grainger, TMH.

<u>Reference Books</u>:

- 1. Power Systems Dynamics and Stability, M.A.Pai- PHI Publications.
- 2. Power system dynamics, K.R. PADIYAR B.S. Publications.

Course	Course Title RENEWA			NERGY	SYST	TEMS	M.Tech PS I Sem			
Course Code		Category	Hours/Week			Credits	Maximum Marks			
1852103		PE-1	L	Т	Р	С	C Continuous Internal Assessment		Total	
			3	0	0	3	40	60	100	
	Mid Exam Duration: 2 HoursEnd Exam Duration: 3Hrs									
Course	Objecti	ives:								
	• To	learn various re	newable	energy	source	s.				
	• To	gain understand	ling of ii	ntegrate	d opera	tion of ren	ewable energy	sources.		
	• To	understand Pow	ver Elect	ronics I	nterface	e with the	Grid.			
Course	Outcon	nes: On succes	sful con	pletion	of this	course, tl	ne students wil	l be able	to	
CO 1	Know	ledge about ren	ewable e	energy.						
CO 2	Under	stand the worki	ng of di	stributed	d gener	ation syste	em in autonomo	ous/grid co	onnected	
	modes.									
CO 3	Know	the Impact of I	Distribut	ed Gene	ration of	on Power S	System.			

<u>UNIT - I</u>

Introduction, Distributed Vs Central Station Generation, Various non - Conventional energy sources, availability, classification merits and demerits.

<u>UNIT - II</u>

Introduction to solar Energy Theory of Solar Cells, Solar cell materials, Solar Cell array, solar radiation, Flat Plate Collectors, Focussing Plate Collectors, Solar Thermal Power Plants.

<u>UNIT - III</u>

Introduction to wind energy, wind power and its Sources, Site Selection, criterion, Classification of rotors, wind characteristics, Performance and limitations of energy conversion Systems.

<u>UNIT - IV</u>

Resources of geothermal energy, Thermo dynamics of geothermal energy conversion electrical conversion, non - electrical Conversion, environmental considerations.

<u>UNIT - V</u>

Tidal and wave energy - Principle of working, Performance and limitations. Biomass energy-Availability of biomass and its Conversion Theory.

Fuel Cells-Working Principle, types of Fuel Cells, Performance and limitations.

Text Books:

- 1. RanjanRakesh, Kothari D.P, Singal K.C, "Renewable Energy Sources and Emerging Technologies, 2nd Ed. Prentice Hall of India, 2011.
- 2. Math H.Bollen, Fainan Hassan, "Integration of Distributed Generation in the Power System", July2011, Wiley –IEEE Press.
- 3. Loi Lei Lai, Tze Fun Chan, "Distributed Generation: Induction and Permanent Magnet Generators", October 2007, Wiley-IEEE Press.
- 4. Roger A.Messenger, Jerry Ventre, "Photovoltaic System Engineering", 3rd Ed, 2010.
- 5. James F.Manwell, Jon G.McGowan, Anthony L Rogers, "Wind energy explained: Theory Design and Application", John Wiley and Sons 2nd Ed, 2010.

Course 7	litle		SMAR	T GRII	M.Tec	h PS I Sei	m				
Course C	code Cat	tegory	Ho	urs/We	ek	Credits	Maximum Marks				
185210	94 P	PE-1	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0	0	3	40	60	100		
	Mid Exam Duration: 2 HoursEnd Exam Duration: 3Hrs										
Course O	bjectives:										
•	Understar	nd concep	ot of sma	rt grid a	nd its a	dvantages	over conventio	nal grid.			
•	Know sm	art meter	ing techi	niques.		-		•			
•	Learn wid		-	-	niques.						
•					-		tion of distribut	ed			
•	Generatio	U	*			U					
Course O				0	v		he students wil	l be able	to		
				-			ntional grid.				
							ercial installation	ons.			
			_				, distributed ge		nd wide		
	area measure		in the ur		inare be	ie stations		unon u			
CO 4	Come up wit	h smart	grid solu	tions usi	ng mo	dern comm	nunication tech	nologies.			

<u>UNIT - I</u>

Introduction to Smart Grid, Evolution of Electric Grid-Concept of Smart Grid, Definitions-Need of Smart Grid, Concept of Robust & Self Healing Grid Present development & International policies in Smart Grid.

<u>UNIT - II</u>

Introduction to Smart Meters, Real Time Pricing, Smart-Appliances, Automatic Meter Reading(AMR)-Outage Management System(OMS)-Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation-Smart Substations, Substation Automation, Feeder Automation.

<u>UNIT - III</u>

Geographic Information System (GIS)-Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Wide Area Measurement System(WAMS)-Phase Measurement Unit(PMU).

<u>UNIT - IV</u>

Concept of micro-grid, need & applications of micro-grid, formation of micro-grid, Issues of inter-connection, protection & control of micro-grid.-Thin film solar cells, Variable speed wind generators, fuel-cells, micro-turbines.

<u>UNIT - V</u>

Advanced Metering Infrastructure (AMI), Home Area Network(HAN),- Neighborhood Area Network (NAN), Wide Area Network (WAN)-Bluetooth, Zigbee, GPS, Wi-Fi, Wi-Max based communication,-Wireless Mesh Network, Basics of CLOUD Computing & Cyber-Security for Smart Grid-Broadband over Power line (BPL).

<u>Reference Books</u>:

- Ali Keyhani, "Design of Smart Power Grid Renewable Energy Systems", Wiley IEEE, 2011.
- 2. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press, 2009.
- 3. JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, "Smart Grid: Technology and Applications", Wiley 2012.
- 4. Stuart Borlase, "Smart Grid: Infrastructure, Technology and solutions", CRC Press.
- 5. A.G.Phadke, "Synchronized Phasor Measurement and their Applications", Springer.

Course	Title	WIND	AND SC	DLAR S	M.Tec	h PS I Sei	m				
Course	Code	Category	Ho	urs/We	ek	Credits	Maximum Marks				
1852105		PE-1	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0	0	3	40	60	100		
	Mid Exam Duration: 2 Hours End Exam Duration: 3Hrs										
Course	Objecti	ves:									
	• To g	get exposure to	wind an	d solar s	systems	3					
	• To	understand the	factors	involve	d in in	stallation a	and commission	ning of a	Solar or		
		d plant.						U			
		-	nics invo	olved w	hen inte	erconnecte	d with power sy	vstem grid	l		
Course		* *					he students wil	· · · · · · · · · · · · · · · · · · ·			
CO 1				-		,	he power gen				
		able energy sou			U . U		1 0				
CO 2						-	d solar power	generation	n and all		
		ated issues so a	-	•		-	Ferrer Perrer	0			
CO 3				-	-		on and the assoc	ciated issu	es.		
CO 4		<u> </u>	V		<u> </u>	<u> </u>	ises using wind				

UNIT-I

Historical development and current status: Introduction – historical background – current status of wind power worldwide – status of wind turbine technology.

Characteristics of wind power generation - basic integration issues: consumer requirements -

requirements from wind farm operators - the integration issues.

<u>UNIT – II</u>

Generators and Power Electronics for wind turbines: generator concepts – power electronic concepts – power electronic solutions in wind farms.

Power quality standards of wind turbines: Power Quality characteristics of wind turbines – Impact on voltage quality.

Technical regulations for inter connections: overview of technical regulations – comparison of technical regulations.

<u>UNIT- III</u>

Isolated systems with wind power: isolated power systems – overview of wind – diesel power systems – wind power impact on power quality.

Reactive power capability and voltage control: Relevance and design paradigm – Reactive power capability of a wind turbine – model based design of voltage control systems for wind power plants.

Economic aspects: introduction – costs for network connection and network upgrading – System operation costs in a deregulated market.

<u>UNIT – IV</u>

Impacts of wind power on power system stability: Power system stability and security – rotor angle stability – voltage stability – frequency stability – dynamic behavior of wind power plants.

Solar energy: merits, demerits – thermal applications.

<u>UNIT- V</u>

Concentrating collectors - devices for thermal collection & storages – Thermal energy storage: sensible heat storage, latent heat storage, Thermo chemical storage - solar pond: principle of working – description.

Text Books:

- 1. Wind power in Power Systems by Thomas Ackerman, John Willy & Sons ltd.
- 2. Solar Energy by K. Sukhatme & S.P. Sukhatme, TMH, 2nd Edition.

Course 7	ſitle	ELECTRICAL POWER DISTRIBUTION SYSTEM				BUTION	M.Tech PS I Sem				
Course (Code	Category	Ho	ours/We	ek	Credits	Maximum Marks				
1852106		PE-2	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0	0	3	40	60	100		
	Mid Exam Duration: 2 HoursEnd Exam Duration: 3Hrs										
Course C)bjecti	ves:									
•	Lea	rning about pov	ver dist	ribution	system						
•	Lea	rning of SCAD	A Syste	em							
•	Unc	lerstanding Dis	ribution	n Autom	ation						
Course C) utcon	nes: On success	sful con	npletion	of this	s course, tl	he students wil	ll be able	to		
CO 1	Gain k	nowledge in po	wer dis	tribution	syster	ns.					
CO 2	Study	of Distribution	automa	tion and	its app	lications.					
CO 3	Learn	SCADA system	1.								
CO 4	Apply	AI Techniques	to DA.								

<u>UNIT-I</u>

Electricity Forecasting: Power loads – connected loads – short term load forecasting - long term load forecasting – distribution of power- Distributed energy supply system – technological forecasting.

<u>UNIT-II</u>

Distribution Automation: need for distribution automation – characteristics of distribution system – distribution automation- feeder automation – communication requirements for DA-Remote Terminal Unit.

<u>UNIT- III</u>

SCADA System: Introduction- block diagram –components of SCADA – functions of SCADA – SCADA applied to DA – Advantages of DA through SCADA – Requirements and feasibility – DA Integration Mechanisms – Communication protocols in SCADA systems.

UNIT-IV

Remote Metering: Background for Automatic Meter Reading(AMR) for utility – Components of AMR systems – communication methods used for meter reading – AMR system – services and functions - Planning for AMR implementation -Optimal Switching Device placement in Radial distribution system – sectionalizing switches.

<u>UNIT –V</u>

AI Techniques Applied to DA: Introduction – general techniques description – genetic algorithm and its implementation – steps followed in simple Genetic algorithm – Application of GA to DA. Energy Management – Need Based Energy Management - Demand Side management -Urban and Rural Distribution Systems: Urban Distribution – Rural distribution systems.

Text Books:

- 1. A.S. Pabla, "Electric Power Distribution", Tata McGraw Hill Publishing Co. Ltd, Fourth Edition.
- 2. M.K. Khedkar, G.M. Dhole, "A Text Book of Electrical Power Distribution Automation", University Science Press, New Delhi.
- 3. Anthony J Panseni, "Electrical Distribution Engineering", CRC Press.

M.Tech-POWER SYSTEMS

Course	e Title	MATHEM POV	IATICA VER EN				M.Tech PS I Sem			
Course	Code	Category	Но	urs/We	ek	Credits	Maximum Marks			
1852107		PE-2	L	Т	Р	С	Continuous Internal Assessment		Total	
			3	0	0	3	40	60	100	
	Mid Exam Duration: 2 HoursEnd Exam Duration: 3Hrs									
Course	Objecti	ves:								
	• Unc	lerstand the rel	evance c	of mathe	matical	methods t	o solve enginee	ering prob	lems.	
	• Unc	lerstand how to	apply th	nese met	thods fo	or a given of	engineering pro	blem.		
Course	Outcon	nes: On succes	sful con	pletion	of this	course, tl	he students wil	l be able	to	
CO 1		ledge about veo operators.	ctor spac	es, linea	r trans	formation,	eigen values a	nd eigenvo	ectors of	
CO 2							erstanding the solution of science and the science are science as the science are science as the science a			
CO 3							nd various tec amming probler		used for	
CO 4		standing the co bility distribution	-	random	n variał	oles, functi	ons of random	variable a	and their	
CO 5	Under	stand stochastic	c process	ses and t	heir cla	ssification	l .			

<u>UNIT-I</u>

Vector spaces, Linear transformations, Matrix representation of linear transformation, Eigen values and Eigen vectors of linear operator.

<u>UNIT- II</u>

Linear Programming Problems, Simplex Method and Duality. Non Linear Programming problems.

UNIT -III

Unconstrained Problems, Search methods, Constrained Problems.

UNIT-IV

Lagrange method, Kuhn-Tucker conditions, Random Variables, Distributions.

<u>UNIT- V</u>

Independent Random Variables, Marginal and Conditional distributions, Elements of stochastic processes.

Reference Books:

- 1. Kenneth Hoffman and Ray Kunze, "Linear Algebra", 2nd Edition, PHI, 1992.
- 2. Hillier F S and Liebermann G J, "Introduction to Operations Research", 8th Edition, McGraw Hill, 2009.
- 3. A Papoulis, S. Unnikrishna pillai, "Probability, Random Variables and Stochastic Processes", 4rd Edition, McGraw Hill., 2002.
- 4. S.S. Rao, Engineering Optimization Theory and Practice ' Third Enlarges Edition, New age international publishers, 2013.
- Irwin Miller and Marylees Miller, John E. Freund's "Mathematical Statistics", 6th Edn, PHI, 2002.
- 6. J. Medhi, "Stochastic Processes", New Age International, New Delhi., 1994.

Course	Title	ELECTRIC	C AND I	HYBRI	M.Tech PS I Sem					
Course	Code	Category	Ho	urs/We	ek	Credits	Maximum Marks			
1852108		PE-2	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
	Mid	Exam Duratio	n: 2 Ho	urs		E	nd Exam Dura	tion: 3H	rs	
Course	Objecti	ves:								
	• To	understand upc	oming te	echnolog	gy of hy	ybrid syste	m.			
	• To	understand diff	erent as	bects of	drives	application	l .			
	• Lea	rning the electr	ic Tract	ion.						
Course	Outcon	nes: On succes	sful con	pletion	of this	s course, tl	he students wi	ll be able	to	
CO 1	Acquir	re knowledge	about f	undame	ntal co	oncepts, pr	rinciples of hy	brid and	electric	
	Acquire knowledge about fundamental concepts, principles of hybrid and electric vehicles.									
CO 2	Analys	se and design o	f hybrid	and elec	ctric ve	hicles.				
CO 3	To learn electric drive in vehicles / traction.									

<u>UNIT - I</u>

History of hybrid and electric vehicles, Social and environmental importance of hybrid and electric vehicles, Impact of modern drive-trains on energy supplies, Basics of vehicle performance, vehicle power source, Characterization - Transmission characteristics, Mathematical models to describe vehicle performance.

<u>UNIT - II</u>

Basic concept of hybrid traction, Introduction to various hybrid drive-train topologies, Power flow control in hybrid drive-train topologies, Fuel efficiency analysis.

<u>UNIT - III</u>

Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives and drive system efficiency.

<u>UNIT - IV</u>

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics devices, Selecting the energy storage technology, Communications, supporting subsystems.

<u>UNIT - V</u>

Introduction to energy management and their strategies used in hybrid and electric vehicle, Classification of different energy management strategies, Comparison of different energy management strategies, Implementation issues of energy strategies.

Reference Books:

- 1. Sira -Ramirez, R. Silva Ortigoza, "Control Design Techniques in Power Electronics Devices", Springer.
- 2. Siew-Chong Tan, Yuk-Ming Lai, Chi Kong Tse, "Sliding Mode Control of Switching Power Converters".

Course	Title	RESEA		ETHOI D IPR	DOLO	GY	M.Tec	h PS I Se	m
Course	Code	Category	Hours/Week			Credits	Maximum Marks		ks
18002	109		L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			2	0	0	2	40	60	100
		Exam Duration	n: 2 Ho	urs		E	nd Exam Dura	tion: 3H	rs
Course	•								
	• To	provide a per	spective	e on re	search	to the so	cholars so as	to broad	en their
	con	ceptions of wha	t resear	ch invol	ves.				
Course CO 1 CO 2	liter rese Inte Outcon Unders	impart knowled ature survey, earch reports a ellectual Propert nes: On success stand research p se research relat	informa and eval ay Rights sful com problem	tion ret luation s pletion formula	rieval, To ex _j of this	use of s pose the	tatistical techn scholars ethics	iques, wi in resea	riting of urch and
CO 3	•	research ethics							
CO 4	Unders	stand that today	's world	l is conti	rolled b	y Comput	er, Information	Technolo	ogy, but
		ow world will							
CO 5	Under	standing that w	hen IPR	would t	ake suc	- h importa	nt place in grov	vth of indi	viduals
	& nati	on, it is needles	s to emp	hasis th	e need	of informa	tion about Inte	llectual Pr	operty
	Right	to be promoted	among s	students	in gene	eral & eng	ineering in part	icular.	
CO 6	Unders	stand that IPR p	orotectio	n provid	les an i	ncentive to	o inventors for f	further res	earch
	work.								
CO 7		vestment in R &					-	oducts, an	id in
	turn br	rings about, eco	nomic g	rowth a	nd soci	al benefits	•		

<u>UNIT-I</u>

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.

Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

<u>UNIT-II</u>

Effective literature studies approaches, Plagiarism and Research ethics.

<u>UNIT-III</u>

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

UNIT-IV

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

<u>UNIT-V</u>

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

Text Books:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students".
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: an Introduction".
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners".

Reference Books:

- 1. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- 2. Mayall, "Industrial Design", McGraw Hill, 1992.
- 3. Niebel, "Product Design", McGraw Hill, 1974.
- 4. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 5. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 6. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008.

Course Title	POW	ER SYS	STEMS	LAB -	Ι	M.Tech PS I Sem			
Course Code	Category	Ho	urs/We	ek	Credits	Maxim	Maximum Marks		
1852110	LAB-1	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		0	0	4	2	50	50	100	
Mid]	Exam Duratio	n: 2 Ho	urs		E	nd Exam Dura	tion: 3Hr	S	
Course Objecti	ves:								
•									
Course Outcom	es: On succes	sful con	pletion	of thi	s course, tl	he students wil	ll be able	to	
CO 1									
CO 2									

Any Eight of the following experiments has to be carried out

- 1. Sequence impedances of synchronous machine
- 1. Single line to ground fault.
- 2. Line to line fault
- 3. Double line to ground fault.
- 4. Symmetrical fault.
- 5. Sequence impedances of three phase transformer.
- 6. Power angle characteristics of salient pole synchronous machine.
- 7. Ferranti effect and ABCD parameters of 220kV transmission line.
- 8. Transient & sub-transient reactance's of synchronous machine.
- 9. Three-phase semi converter.

Course Title	POWER		MS SIN AB - I	M.Tech PS I Sem				
Course Code	Category	Hours/Week Credits				Maxim	um Marl	KS
1852111	LAB-2	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		0	0	4	2	50	50	100
Mid	Exam Duratio	n: 2 Ho	urs		E	nd Exam Dura	tion: 3Hı	S
Course Objecti	ves:							
•								
Course Outcom	nes: On succes	sful con	npletion	of this	s course, tl	he students wil	l be able	to
CO 1								
CO 2								

Any Eight of the following experiments has to be carried out

- 1. Formation of Y-bus
- 2. Formation of Z-bus
- 3. Load flow analysis by Gauss-Seidel Method
- 4. Load flow analysis by Newton-Raphson Method
- 5. Load flow analysis by Fast-decoupled Method
- 6. Small signal stability of Single machine connected to Infinite bus system
- 7. Transient stability of Multi Machine System
- 8. Simulation of Static VAR Compensator
- 9. Short circuit studies
- 10. Harmonic analysis & tuned filter design to mitigate harmonics.

M.TECH.-II- SEMESTER SYLLABUS

Course Ti	tle DIGITAL	-	CTION STEM	OF PO	OWER	M.Tech	n PS II Se	m	
Course Co	de Category	Ho	ours/We	ek	Credits	Maxim	um Marl	KS	
1852201	CORE-3	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0	0	3	40	60	100	
I	Mid Exam Duratio	n: 2 Ho	urs		E	nd Exam Dura	tion: 3H	S	
Course Ob	jectives:								
•	Study of numerica	l relays							
•	Developing mathe	matical a	approach	n towar	ds protecti	on			
•	Study of algorithm	ns for nu	merical	protect	ion				
Course Ou	tcomes: On succes	sful con	npletion	of this	s course, tl	he students wil	l be able	to	
CO1 L	earn the importance	of Digit	al Relay	/s.					
CO 2 A	Apply Mathematical approach towards protection.								
CO3 L	earn to develop vari	ous Prot	ection a	lgorith	ns.				

<u>UNIT - I</u>

Introduction: Evolution of Digital Relays from Electromechanical Relays, Performance and Operational Characteristics of Digital Protection.

<u>UNIT - II</u>

Mathematical Background to Protection Algorithms: Finite Difference Techniques, Interpolation Formulas: Forward, Backward and Central Difference Interpolation, Numerical Differentiation, Curve Fitting and Smoothing, Least Squares Method, Fourier analysis, Fourier series and Fourier Transform, Walsh Function Analysis.

<u>UNIT - III</u>

Basic Elements Of Digital Protection: Signal Conditioning: transducers, Surge Protection, Analog Filtering, Analog Multiplexers, Conversion Subsystem Sampling Theorem, Signal Aliasing Error, Sample And Hold Circuits, Multiplexers, Analog To Digital Conversion, Digital Filtering Concepts, The Digital Relay as a Unit Consisting Of Hardware and Software.

<u>UNIT - IV</u>

Sinusoidal Wave Based Algorithms: Sample and First Derivative (Mann and Morrison) algorithm. Fourier and walsh based Algorithms.

Fourier Algorithm: Full Cycle Window algorithm, Fractional Cycle Window algorithm. Walsh Function Based Algorithm. Least Squares based algorithms. Differential Equation Based Algorithms.

<u>UNIT - V</u>

Travelling Wave based Techniques: Digital Differential Protection of Transformers. Digital Line Differential Protection. Recent Advances in Digital Protection of Power Systems.

<u>Reference Books</u>:

- 1. A.G. Phadke and J. S. Thorp, "Computer Relaying for Power Systems", Wiley/Research studies Press, 2009.
- 2. A.T. Johns and S. K. Salman, "Digital Protection of Power Systems", IEEE Press, 1999.
- 3. Gerhard Zeigler, "Numerical Distance Protection", Siemens Publicis Corporate Publishing, 2006.
- 4. S.R.Bhide "Digital Power System Protection" PHI Learning Pvt.Ltd.2014.

Course	Title	POWER	SYSTE	M DYN	AMIC	CS-II	M.Tecl	n PS II Se	m				
Course	Code	Category	Hours/Week			Credits	Maxim	num Marl	KS				
18522	202	CORE-4	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
			3	0	0	3	40	60	100				
	Mid	Exam Duration: 2 Hours End Exam Duration: 3Hrs											
Course	Objecti	ves:											
	• Stu	dy of power sys	tem dyr	namics									
	• Inte	rpretation of po	wer sys	tem dyn	amic p	henomena							
	• Stu	dy of various fo	rms of s	stability	-								
Course	Outcon	nes: On success	sful con	npletion	of this	s course, tl	he students wi	ll be able	to				
CO 1	Gain v	aluable insights	s into th	e pheno	mena o	f power sy	stem including	obscure o	nes.				
CO 2	Understand the power system stability problem.												
CO 3	Analyze the stability problems and implement modern control strategies. Simulate small												
	signal	ignal and large signal stability problems.											

UNIT-I

Basic Concepts and Definitions: Concept of State, Eigen values, Eigen Vectors, Representation of State space. Small signal stability of single machine connected to infinite bus system.

<u>UNIT-II</u>

Effect of Damper, Flux Linkage Variation and Effect of AVR on Synchronizing and Damping

Torque Components, Block diagram.

<u>UNIT-III</u>

Large Signal Rotor Angle Stability, Mitigation Using Power System Stabilizer, Multi-Machine Stability.

UNIT-IV

Dynamic Analysis of Voltage Stability- Modeling requirements, Static and Dynamic analysis, Voltage Collapse.

UNIT-V

Frequency Stability: Automatic Generation Control Models-Primary Speed Control and Supplementary Control, Implementation of AGC, Functional Block Diagram.

Text Books:

- 1. P.M. Anderson and A.A. Fouad, "Power System Control And Stability", IEEE Press.
- 2. Power System Stability and Control, P.Kundur, TMH.
- 3. Power System Analysis and Design, William D Stevenson, John J Grainger, TMH.
- 4. Power Systems Dynamics and Stability, M.A.Pai- PHI Publications.

Course	Title	RESTRUC	FURED	POWE	R SYS	STEMS	M.Tech	n PS II Se	m		
Course	Code	Category	Ho	urs/We	ek	Credits	Maxim	um Marl	KS		
18522	203	PE-3	L	Т	Р	С	Continuous Internal Assessment	tion: 3H be able	Total		
			3	0	0	3	40	60	100		
	Mid 1	Exam Duratio	n: 2 Ho	urs		E	nd Exam Duration: 3Hrs				
Course	Objecti	ves:									
	• Und	lerstand what is	s meant l	by restru	icturing	g of the ele	ctricity market.				
	 Understand what is meant by restructuring of the electricity market. Understand the need behind requirement for deregulation of the electricity market. 										
	• Und	lerstand the mo	ney, pov	ver & in	format	ion flow ir	a deregulated	power sys	tem.		
Course	Outcon	nes: On succes	sful con	pletion	of this	course, tl	he students wil	l be able	to		
CO 1	Unders	stand various ty	pes of r	egulatio	ns in po	ower syste	ms.				
CO 2	Identif	y the need of re	gulatior	n and de	regulat	ion.					
CO 3		•	0		0		sues in Deregu	lated Pow	er		
	Industr	ry.					C				
CO 4		y and give example	mples of	existing	g electr	icity marke	ets.				
CO 5			1		/		he role of vario	us entities	in the		
	market	• t.									

<u>UNIT-I</u>

Deregulation of Electric Utilities: Introduction – Traditional central utility model, reform motivations, separation of ownership and operation, competition and direct access in the electricity market, independent system operator (ISO), retail electric providers, different experiences.

<u>UNIT-II</u>

Competitive Wholesale Electricity Markets & Transmission Open Access: Introduction, ISO, wholesale electricity market characteristics, market model, challenges, trading arrangements, the pool and bilateral trades, multi lateral trades.

UNIT-III

Transmission Cost Allocation Methods: Introduction - Postage Stamp Rate Method -Contract Path Method - MW-Mile Method – Unused Transmission Capacity Method - MVA-Mile method – Comparison of cost allocation methods.

UNIT-IV

Market Power & Ancillary Services Management: Introduction - Different types of market Power – Mitigation of Market Power – Examples - Introduction – Reactive Power as an Ancillary Service – a Review – Synchronous Generators as Ancillary Service Providers.

<u>UNIT-V</u>

Available Transfer Capability (ATC) : Transfer Capability Issues – ATC – TTC – TRM – CBM Calculations – Calculation of ATC based on power flow - Introduction – Electricity Price Volatility Electricity Price Indexes – Challenges to Electricity Pricing – Construction of Forward Price Curves – Short-time Price Forecasting.

Text Books:

- 1. Power System Restructuring and Deregulation, Loi Lei Lai, John Wiley & Sons Ltd., England, 2001.
- 2. Operation of Restructured Power System, Kankar Bhattacharya, Math H.J. Boller and Jaap E. Daalder Kulwer Academic Publishers, 2001.
- 3. Restructured Electrical Power Systems, Mohammad Shahidehpour and Muwaffaq alomoush, Marcel Dekker, Inc., 2001.

Course	Title		-	GY AUDITING AND MANAGEMENT M.Tech PS II S		h PS II Se	em			
Course	Code	Category	Hours/Week Credits			Maxim	um Marl	κs		
18522	204	PE-3	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
Mid Exam Duration: 2 HoursEnd Exam Duration: 3Hrs										
Course	Objecti	ves:								
	• To 1	understand the	need for	energy	auditin	g.				
	• Unc	lerstanding of v	various l	oads inv	volved l	based on p	ower consumpt	ion for au	diting to	
	kno	w about differe	nt audit	instrum	ents us	ed in pract	ice.			
Course	Outcon	nes: On success	sful con	npletion	of this	s course, tl	ne students wil	l be able	to	
CO 1	Acquir	e the backgrou	nd requi	ired for e	enginee	ers to meet	the role of ener	gy manag	gers and	
	to acquire the skills and techniques required to implement energy management.									
CO 2	Identif	Identify and quantify the energy intensive business activities in an organization.								
CO 3	Able to	o perform basic	energy	audit in	an org	anization.				

<u>UNIT - I</u>

System approach and End use approach to efficient use of Electricity-Electricity tariff types-Energy auditing: Types and objectives - audit instruments-ECO assessment and Economic methods-Specific energy analysis-Minimum energy paths-consumption models-Case study.

<u>UNIT - II</u>

Electric motors-Energy efficient controls and starting efficiency-Motor Efficiency and Load-Load Matching and selection of motors-Variable speed drives; Pumps and Fans-Efficient Control strategies - Optimal selection and sizing-Transformer Loading/Efficiency analysis-Reactive Power management-Capacitor-Sizing-Degree of Compensation-Capacitor-losses-Location-Placement-Maintenance,-Case-study.

<u>UNIT - III</u>

Peak Demand controls- Methodologies-Types of Industrial loads-Optimal Load schedulingcase study-Lighting- Energy efficient light sources-Energy conservation in Lighting Schemes-Electronic ballast-Power quality issues-Luminaries, case study.

<u>UNIT - IV</u>

Cogeneration-Types and Schemes-Optimal operation of cogeneration plants-case study-Electric loads of Air conditioning &Refrigeration-Energy conservation measures- Cool storage-Types-Optimal operation case study.

<u>UNIT - V</u>

Electric water heating-Geysers-Solar Water Heaters-Power Consumption in Compressors-Energy conservation measures-Electrolytic Process-Computer Controls- software-EMS.

Reference Books:

- 1. Anthony J. Pansini, Kenneth D. Smalling, .Guide to Electric Load Management., Pennwell Pub; (1998).
- Howard E. Jordan, Energy-Efficient Electric Motors and Their Applications., Plenum Pub Corp; 2ndedition (1994).
- 3. Giovanni Petrecca, Industrial Energy Management: Principles and Applications., The Kluwerinternational series -207,1999.
- Handbook on Energy Audit and Environment Management, Y P Abbi and Shashank Jain, TERI, 2006.
- 5. Handbook of Energy Audits Albert Thumann, William J. Younger, Terry Niehus, 2009.

Course Ti	le POWE	R APPA	RATUS	5 DESI	GN	M.Tecl	h PS II Se	em		
Course Co	de Category	Ho	Hours/Week Credi			Maxim	um Marl	KS		
1852205	PE-3	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
		3	0	0	3	40	60	100		
Γ	Aid Exam Duration	on: 2 Ho	urs		E	nd Exam Dura	tion: 3Hr	S		
Course Ob	jectives:									
•	Study the modelli	ng analys	sis of rot	ating n	nachine.					
•	Learning electron	agnetic e	energy c	onvers	ion					
•	To know about ra	ting of m	achines.							
Course Ou	tcomes: On succe	U			s course, tl	he students wil	l be able	to		
CO1 To	give a systematic	approac	h for mo	odeling	and analy	sis of all rotatin	ng machin	es under		
	both transient and steady state conditions with the dimensions and material used.									
CO 2 A	Ability to model and design all types of rotation machines including special machines.									

UNIT-I

The Design problem – Introduction, design specifications, limitations in design, Modern trends in design of electrical machines.

Thermal state in electrical Machines – Salient features of heating curves – cooling of rotating machines – Methods of cooling - cooling system - Induced & forced ventilation, Radial and Axial Ventilation - Cooling of turbo alternators: Hydrogen cooling, Direct cooling, Air cooled. - Types of Duties and Ratings.

<u>UNIT - II</u>

Design of transformers – Types of transformer – core construction, output equation, principle of design of core, windings, yoke main dimensions (H & W) for single phase: core type, shell type. 3-phase – core type transformers estimation of no load current of transformer.

Temperature rise of transformer- Design of tank with tubes.

<u>UNIT-III</u>

General concepts of rotating machines – Output equation of dc machines, ac machines, separation of D & L, choice of specific loadings.

Design of D.C machines – Choice of no. of poles, selection of no. of armature slots, choice of winding, estimation of conductor cross section of armature, design of field systems: tentative design of field winding of dc machines.

UNIT-IV

Design of 3-phase induction motor – Separation of D & L, Choice of Ampere conductors and B_{av} .

Stator design – Selection of no of stator slots, turns per phase, design of conductor cross section.

Rotor design - Selection of no of rotor slots, principles of design of squirrel cage rotor, design of slip ring rotor.

Relation between D&L for best power factor – Methods of improving Starting Torque - Losses & Efficiency.

UNIT-V

Design of synchronous machines – Separation of D & L, choice of Ampere conductors & B_{av}

- Short Circuit Ratio (SCR) and its significance.

Armature design – choice of no. of stator (Armature) slots, turns/phase, conductor cross section for both salient pole and cylindrical pole machines.

Introduction to computer aided design – different approaches.

Reference Books:

- 1. Sawhney. A. K., "A course in Electrical Machine Design", Dhanpat Rai & Co.
- 2. Clayton. A. E. & NN Hancock, "The performance and design of Direct Current machines", CBS publishers & Distributors.

Course	Title	SCADA SYS	STEM A	ND AP	PLICA	TIONS	M.Tech	n PS II Se	m
Course	Code	Category	Ho	urs/We	ek	Credits	Maxim	um Marl	KS
18522	206	PE-4	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	0	0	3	40	60	100
	Mid	Exam Duratio	n: 2 Ho	urs		E	nd Exam Dura	tion: 3Hr	S
Course	Objecti	ves:							
	• To	understand what	at is SCA	ADA and	l its fur	nctions.			
	• To]	know various c	ommuni	cation u	sed in S	SCADA.			
	• To	get an insight i	nto its ap	plicatio	n.				
Course	Outcon	nes: On succes	sful con	pletion	of this	s course, tl	he students wil	ll be able	to
CO 1	Under	stand the basic	tasks o	f Superv	visory (Control Sy	stems (SCADA	A) as well	as their
	typical	l applications.							
CO 2	Acquir	re knowledge a	bout SC	ADA are	chitectu	ire, variou	s advantages an	nd disadva	ntages
	of eacl	h system.							
CO 3	Gain k	nowledge abou	it single	unified	standar	d architect	ure IEC 61850.		
CO 4	Learn	about SCADA	system of	compone	ents: re	mote termi	inal units, PLCs	s, intellige	nt
		onic devices, H							
CO 5	Learn	and understand	about S	CADA	applica	tions in tra	insmission and	distributio	on
	sector,	industries etc.							

<u>UNIT - I</u>

Introduction to SCADA-Data acquisition systems-Evolution of SCADA-Communication technologies.

<u>UNIT - II</u>

Monitoring and supervisory functions-SCADA applications in Utility Automation-Industries SCADA.

<u>UNIT - III</u>

SCADA System Components-Schemes- Remote Terminal Unit (RTU)-Intelligent Electronic Devices (IED)-Programmable Logic Controller (PLC)-Communication Network, SCADA Server, SCADA/HMI Systems.

<u>UNIT - IV</u>

SCADA Architecture-Various SCADA architectures, advantages and disadvantages of each System-Single unified standard architecture -IEC 61850.

<u>UNIT - V</u>

SCADA Communication-various industrial communication technologies-wired and wireless methods and fiber optics-SCADA Applications: Utility applications.

<u>Reference Books</u>:

- 1. Stuart A. Boyer: "SCADA-Supervisory Control and Data Acquisition", Instrument Society of America Publications, USA, 2004.
- 2. Gordon Clarke, Deon Reynders: "Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems", Newnes Publications, Oxford, UK, 2004.
- 3. William T. Shaw, "Cyber security for SCADA systems", Penn Well Books, 2006.
- 4. David Bailey, Edwin Wright, "Practical SCADA for industry", Newnes, 2003.
- 5. Michael Wiebe, "A guide to utility automation: AMR, SCADA, and IT systems for electric power", Penn Well 1999.

Course	Title	P	OWER	QUALI	TY		M.Tecl	End Exams Total nent 60 100 Duration: 3Hrs 3Hrs odies like 5 ts will be able to 6 evices and effect of 6			
Course	Code	Category	Но	urs/We	ek	Credits	Maxim	um Marl	KS		
18522	207	PE-4	L	Т	Р	С	Continuous Internal Assessment		Total		
			3	0	0	3	40	60	100		
	Mid	Mid Exam Duration: 2 Hours E						tion: 3Hr	s		
Course	Objecti	Dbjectives:									
	• Understand the different power quality issues to be addressed.										
		lerstand the rec	-	-	•			like			
		E, IEC, etc on		-	•			line			
			U	-							
C		lerstanding STA			•			16	4 -		
				<u> </u>							
CO 1	1	U				monic intr	oducing device	s and effe	ct of		
	harmo	nics on system	equipme	ent and l	oads.						
CO 2	Develo	op analytical mo	odeling	skills ne	eded fo	or modeling	g and analysis c	of harmon	ics in		
	netwo	rks and compon	ents.				- •				
CO 3	Understand active power factor correction based on static VAR compensators and its control techniques.										
CO 4	Analyz	ze series and sh	unt activ	ve power	r filteri	ng techniq	ues for harmon	ics			

<u>UNIT - I</u>

Introduction-power quality-voltage quality-overview of power quality Phenomenaclassification of power quality issues-power quality measures and standards-flicker factor transient phenomena-occurrence of power quality problems.

<u>UNIT - II</u>

Harmonics-individual and total harmonic distortion-RMS value of a harmonic waveform-Triplex harmonics-important of harmonic introducing devices-SMPS-Three phase power converters- arcing devices- saturable devices-harmonic distortion of fluorescent lamps-effect of power system harmonics on power system equipment and loads.

<u>UNIT - III</u>

Modeling of networks and components under non-sinusoidal Conditions- transmission and distribution systems-Shunt capacitors-transformers-electric machines-ground systems loads that cause power quality problems-power quality problems created by drives and its impact on drive.

<u>UNIT - IV</u>

Power factor improvement- Passive Compensation-Passive Filtering, Harmonic Resonance-Active Power Factor Correction- Single Phase Front End,-Control Methods for Single Phase APFC & Three Phase APFC and Control Techniques, PFC-Based on Bilateral Single Phase and Three Phase Converter.

<u>UNIT - V</u>

Dynamic Voltage Restorers for sag, swell and flicker problems. Grounding and wiring introduction-grounding requirements-reasons for grounding

<u>Reference Books</u>:

- 1. G.T. Heydt, "Electric power quality", McGraw-Hill Professional, 2007.
- 2. Math H. Bollen, "Understanding Power Quality Problems", IEEE Press, 2000.
- 3. J. Arrillaga, "Power System Quality Assessment", John wiley, 2000.
- 4. J. Arrillaga, B.C. Smith, N.R. Watson & A. R.Wood ,"Power system Harmonic Analysis", Wiley, 1997.

Course	Title	A	I TEC	HNIQU	ES		M.Tecl	h PS II Se	em		
Course	Code	Category	Hours/Week Credits			Maxim	um Marl	KS			
18522	208	PE-4	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0	0 3 40	40	60	100			
	Mid]	Exam Duratio	n: 2 Ho	urs		E	nd Exam Dura	tion: 3Hr	S		
Course (Objecti	ves:									
	• Und	lerstanding fuz	zy logic	ANN							
	• Und	lerstanding GA	& EP								
Course (Outcom	es: On succes	sful con	npletion	of this	s course, tl	he students wil	l be able	to		
CO 1	Learn	the concepts of	biologi	cal found	dations	of artificia	al neural netwo	rks.			
CO 2	Learn	Feedback netw	orks and	l radial t	asis fu	nction netw	works and fuzzy	y logics.			
CO 3	Identif	lentifications of fuzzy and neural network.									
CO 4	Acquir	Acquire the knowledge of GA									

UNIT-I

Artificial Neural Networks: Basics of ANN - Comparison between Artificial and Biological Neural Networks – Basic Building Blocks of ANN – Artificial Neural Network Terminologies – McCulloch Pitts Neuron Model – Learning Rules, Perceptron Networks – Back Propagation Neural Networks – Associative Memories Radial Basis Function Networks.

<u>UNIT-II</u>

Fuzzy Logic: Classical Sets – Fuzzy Sets – Fuzzy Properties and Operations – Fuzzy Logic System – Fuzzification – Defuzzification – Membership Functions- Knowledge Representation and Inference Mechanism – Fuzzy Rule base – Fuzzy Logic Controller Design.

UNIT-III

Fuzzy Neural Network- System Identification using Fuzzy and Neural Network.

UNIT-IV

Genetic algorithm- Reproduction cross over, mutation- Introduction to evolutionary program.

UNIT-V

Neural Network Applications to Electrical Load Forecasting, Control systems, Fuzzy Logic Implementation for Induction Motor Control. Automatic Voltage Regulator-GA Applications.

Text Books:

- 1. J M Zurada , "An Introduction to ANN", Jaico Publishing House.
- 2. Simon Haykins, "Neural Networks", Prentice Hall.
- 3. Timothy Ross, "Fuzzy Logic with Engg.Applications", McGraw. Hill.
- 4. Driankov, Dimitra, "An Introduction to Fuzzy Control", Narosa Publication.
- 5. Golding, "Genetic Algorithms", Addison-Wesley Publishing Com.

Reference Books:

- Introduction to Fuzzy Logic using MATLAB by S. N. Sivanandam, S. Sumathi and S. N. Deepa, Springer International Edition, 2013.
- Intelligent System Modeling, Optimization & Control by Yung C. Shin and Chengying Xu, CRC Press, 2009.
- Introduction to Neural Networks using MATLAB by S. N. Sivanandam, S. Sumathi and S. N. Deepa, Tata McGraw Hill Edition, 2006.
- Fuzzy Logic with Engineering Applications by Timothy J. Ross, WILEY India Edition, 3rd Edition, 2012.

Course	Title	MINI PR	OJECT	WITH	SEMI	NAR	M.Tecl	h PS II Se	em
Course	Code	Category	Ho	urs/We	ek	Credits	Maxim	um Marl	KS
18522	209	CORE-5	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			0	0	4	2	100		100
		Internal Asses	sment						
Course	Objecti	ves:							
	 dev Ider and Cor Dev 	elopment ntify, analyze, f systematic app ntribute as an in velop effective of nes: On succes	formulat roach dividual commun sful con	e and hat or in a thication s inpletion	andle p team in skills fo of this	rogrammin developm or presenta course, th	area of techno ng projects with nent of technical tion of project 1 he students will strial environme	a compression a compression a compression a compression and a compression and a compression a compre a compression a comp	ehensive ivities to
CO 2	interns	ship.		-			sing software /	-	-
	compu	itational tools.				-	ising software /	anarytical	. /
CO 3		nts will learn to			-				
CO 4		-	skills to	present	and de	efend their	work in front o	of technica	lly
	qualifi	ed audience.							

Students can take up small problems in the field of design engineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

Course Title	POWI	ER SYS	TEMS	M.Tech PS II Sem					
Course Code	Category	Hours/Week			Credits	Maxim	Maximum Marks		
1852210	LAB-3	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		0	0	0	4	50	50	100	
					E	nd Exam Dura	tion: 3Hr	S	
Course Objecti	ves:								
•									
Course Outcom	nes: On succes	sful con	pletion	of this	s course, tl	he students wil	l be able	to	
CO 1			•		,				
CO 2									
CO 3									
CO 4									

Any Eight of the following experiments has to be carried out.

- 1. Characteristics of over current relay.
- 2. Characteristics of Directional Over Current Relay
- 3. Testing of Relay
- 4. Characteristics of differential current relay.
- 5. Over voltage/under voltage relay.
- 6. Negative sequence relay.
- 7. Voltage & Current control of 220kV transmission line.
- 8. Study of rooftop solar system.
- 9. Field visit to wind generation system.
- 10. Study of Bio-mass generation plant.

Course Title	POWER		MS SIN B - II	/IULA'	ΓΙΟΝ	M.Tech PS II Sem			
Course Code	Category	Hours/Week Credits			Credits	Maxim	um Marl	KS	
1852211	LAB-4	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		0	0	0	4	50	50	100	
					E	nd Exam Dura	tion: 3Hr	S	
Course Objecti	ves:								
•									
Course Outcom	nes: On succes	sful con	npletion	n of thi	s course, tl	he students wil	l be able	to	
CO 1			-		·				
CO 2									
CO 3									
CO 4									

Any Eight of the following experiments has to be carried out.

- 1. Single Area Load Frequency Control with and without PI controller.
- 2. Two area load frequency control system.
- 3. Simulation of swing equation.
- 4. Simulation of AVR system.
- 5. Simulation of Excitation system stabilizer.
- 6. Simulation of FACTS controllers.
- 7. Simulation of Power Quality problems.
- 8. Three -phase fully controlled rectifiers.
- 9. Three- phase inverter with PWM controller.
- 10. Buck & Boost converters for power system applications.

M.TECH.-III- SEMESTER SYLLABUS

Course	Title	POWER	SYSTE	EM TRA	NSIE	NTS	M.Tech	PS III Se	em	
Course	Code	Category	Hours/Week Credits				Maximum Marks			
1852301	301	PE-5	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
	Mid 1	Exam Duratio	n: 2 Ho	urs		E	nd Exam Dura	tion: 3Hr	S	
Course	Objecti	ves:								
	• Lea	rn the reasons f	for occu	rrence o	f transi	ents in a po	ower system.			
	• Und	lerstand the cha	inge in p	oaramete	ers like	voltage &	frequency durin	ng transie	nts.	
			0 1			U	ect on power sy	U		
Course			0	<u> </u>			he students wil		to	
CO 1				-			in power systen			
	mather	natical formula	tion.							
CO 2	Ability	to design varie	ous prot	ective de	evices	in power sy	ystem for protec	cting equip	oment	
	and per	rsonnel.	-			- •	-		-	
CO 3	Coordi	nating the insu	lation of	f various	s equip:	ment's in p	ower system.			
CO 4	Model	ing the power s	system fo	or transi	ent ana	lysis.	•			

<u>UNIT-I</u>

Simple switching transients: Circuit closing transients, recovery transients initiated by removal of short circuit, double frequency transient damping, resistance switching, load switching.

Abnormal switching transients: Normal & abnormal switching transients, current suppression, capacitance switching, transformer magnetizing in rush current.

<u>UNIT-II</u>

Modelling of power apparatus of their transient conditions: Transformer model for switching on open circuit, Internal model for transformer, Modelling of transformer for transfer of surges, modeling of generators, modeling of motors, modeling of overhead transmission lines and cables

<u>UNIT-III</u>

Lighting, physical phenomena of lighting, interaction between lighting and power system, Influence of tower footing resistance and earth resistance.

Insulation co-ordination, strength of insulation, Hierarchy of insulation co-ordination, test voltage waveforms and transient ratings, approaches to insulation co-ordination.

UNIT-IV

Travelling waves on transmission line: circuits with distributed parameters - Wave equation -Reflection & refraction - behaviour of travelling waves at the line terminations- lattice diagrams - Attenuation & distortion - Multi conductor system and velocity wave.

<u>UNIT-V</u>

Protection of system against Transient over voltages: Protection of transmission line against lighting, lighting shielding of substations, lighting arresters, surge arresters, surge capacitors and reactors, Surge protection of rotating machines.

Text Books:

 Allan Greenwood, "Electrical transients in Power System", Wiley & Sons Inc. New York, 1991.

Course	Title	INDUSTRIA		D MOI TROL	DELIN	IG AND	M.Tech	n PS III S	em
Course	Code	Category	Но	urs/We	ek	Credits	Maxim	um Marl	KS
1852302		PE-5	L	Т	Р	С	Internal	End Exams	Total
			3	0	0	3	40	60	100
	Mid	Exam Duration	n: 2 Ho	urs		E	nd Exam Dura	tion: 3Hr	S
Course	Objecti	ves:							
	• Unc	lerstand the ene	rgy den	nand sce	nario.				
	• Unc	lerstand the mo	deling o	f load a	nd its e	ase to stud	y load demand	industrial	ly.
	• Ana	alyze Electricity	pricing	models			•		•
		dy Reactive pov	· ·			lustries.			
Course		nes: On success		0			he students wil	l be able	to
CO 1	Gain k	nowledge abou	t load co	ontrol te	chniqu	es in indus	tries and its app	olication.	
CO 2	Learn	different types	of indu	strial pr	ocesse	s and optim	mize the proces	ss using to	ools like
		O and LINGO.		1		1	Ĩ	U	
CO 3	Apply	load manageme	ent to re	duce de	mand c	of electricit	y during peak t	ime.	
CO 4		different energy							

<u>UNIT - I</u>

Electric Energy Scenario-Demand Side Management- Industrial Load Management, Load Curves-Load Shaping Objectives, Methodologies-Barriers

Classification of Industrial Loads, Continuous and Batch processes -Load Modelling.

<u>UNIT - II</u>

Electricity pricing – Dynamic and spot pricing -Models, Direct load control- Interruptible load control, Bottom - up approach- scheduling- Formulation of load Models, Optimization and control algorithms - Case studies.

<u>UNIT - III</u>

Reactive power management in industries-Controls-power quality impacts Application of filters Energy saving in industries.

<u>UNIT - IV</u>

Cooling and heating loads, load profiling, Modelling- Cool storage, Types-Control strategies, optimal operation, and Problem formulation- Case studies.

<u>UNIT - V</u>

Operating and control strategies, Power Pooling- Operation models, Peak load saving, Constraints Problem formulation- Case study, Integrated Load management for Industries.

Reference Books:

- 1. C.O. Bjork "Industrial Load Management Theory, Practice and simulations", Elsevier, the Netherlands, 1989.
- C.W. Gellings and S.N. Talukdar, Load management concepts. IEEE Press, New York, 1986, pp. 3-28.
- 3. Y. Manichaikul and F.C. Schweppe," Physically based Industrial load", IEEE Trans. on PAS, April 1981.
- 4. H. G. Stoll, "Least cost Electricity Utility Planning", Wiley Inter science Publication, USA, 1989.
- 5. I.J. Nagarath and D.P. Kothari, .Modern Power System Engineering., Tata McGraw Hill publishers, NewDelhi, 1995.
- 6. IEEE Bronze Book- "Recommended Practice for Energy Conservation and cost effective planning in Industrial facilities", IEEE Inc, USA.

Course	Title	DYNAMI	CS OF I	LINEAI	R SYST	TEMS	M.Tech	PS III S	em	
Course	Code	Category	Ho	urs/We	ek	Credits	Maxim	KS		
1852303		PE-5	L T P		Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0	0	3	40	60	100		
	Mid	Exam Duratio	n: 2 Ho	urs		E	nd Exam Dura	tion: 3H	S	
Course	Course Objectives:									
	• To	understand the	linear sy	stem an	d its fu	nctions.				
			-				ems and imple	ment the	same in	
		TLAB.		<i></i>		j.	r i i i i i i i i i i i i i i i i i i i			
Course	Outcon	nes: On succes	sful con	pletion	of this	s course, tl	he students wil	l be able	to	
CO 1				-		,	as to obtain the			
		ne to engineeri		•		0		5	11.2	
CO 2		0	<u> </u>		0	. .	lysis of both lir	near and n	onlinear	
	system	U	,8				- <i>j</i> 00000 00			
CO 3	~	observers and	controll	ers for l	inear s	vstems.				
CO 4	Ŭ	se and design p					T AR			

<u>UNIT- I</u>

Introduction Concept of State, State Variables and State Model, State model for Linear Continuous Time Systems, transfer function and transfer function matrix, MATLAB programs.

<u>UNIT- II</u>

Solving the time invariant state equation methods-exponential Laplace for homogeneous and non-homogeneous state equations

<u>UNIT- III</u>

Controllability, complete controllability of continuous time systems observability complete observability of continuous time systems principle of duality.

<u>UNIT- IV</u>

The introduction to the design pole placement method, problems in MATLAB. State observers, full order- minimum order.

UNIT-V

Lyapunov stability analysis, introduction, Lyapunov stability criterion, direct method of lyapunov and the linear systems.

Text Books:

- 1. Thomas Kailath, "Linear Systems", Prentice Hall Inc., Englewood Cliffs, N.J. 1980.
- K. Ogata, "State Space Analysis of Control Systems", Prentice Hall Inc., Englewood Cliffs, N.J., 1965.
- K. Ogata, "Modern Control Engineering, (second edition)", Prentice Hall Inc., Englewood Cliffs, N.J., 1990.
- 4. M. Gopal, "Digital Control and State Variable Methods", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.
- C.T. Chen, "Linear System Theory and Design", New York: Holt Rinehart and Winston, 1984.
- R.C. Dorf, and R. T. "Bishop, Modern Control Systems", Addison Wesley Longman Inc., 1999.

OPEN ELECTIVES

- 1. Business Analytics
- 2. Industrial Safety
- 3. Operations Research
- 4. Cost Management of Engineering Projects
- 5. Composite Materials
- 6. Waste to Energy

Course Title	BUS	SINESS (Open	ANALY Elective			M.Tech	PS III S	em	
Course Code	Category	Ho	urs/We	ek	Credits	Maximum Marks			
1871304	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0	0	3	40	60	100	
Mi	d Exam Duratio	n: 2 Ho	urs		E	nd Exam Dura	tion: 3H	S	
 betwee To gai busine To bec Use de Mange Analyz retail, 	the data using state on the underlying on an understanding some familiar with cision-making to business process and solve pro- software, banking omes: On success	busines ng of ho to suppo th proce ools/Ope s using a oblems f g and fin	s proces ow mana rt manag sses nee rations r nalytica rom dif ance, sp	ses of a gers us gerial d ded to esearch l and m ferent orts, pl	in organiza se business ecision ma develop, r n technique nanagemen industries narmaceuti	tion. analytics to for king. eport, and anal es. t tools. such as manu- cal, aerospace	ormulate a yze busin facturing, etc.	nd solve ess data. service,	
	ents will demons				,	ie students wh		10	
CO 2 Stud	ents will demons and deep analyti	trate the	-		•	in making deci	sions base	ed on	
	ents will demons criptive modeling						ive and		
CO 4 Stud	ents will demons	trate the	ability t	o trans	late data in	to clear, action	able insig	hts.	

<u>UNIT I</u>

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organisation, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modeling, sampling and estimation methods overview.

<u>UNIT II</u>

Trendiness and Regression Analysis: Modeling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

<u>UNIT III</u>

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes.

Descriptive Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

<u>UNIT IV</u>

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

<u>UNIT V</u>

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making. Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

Text Books:

- 1. Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, "Business analytics Principles, Concepts, and Applications", Pearson FT Press.
- 2. James Evans, "Business Analytics", persons Education.
- 3. Essentials of Business Analytics: An Introduction to the Methodology and its Applications, Bhimsankarm Pochiraju, Sridhar Seshadri, Springer.

Reference Books:

- 1. Business Analytics: Data Analysis and Decision Making, S. Christian Albright, Wayne L. Winstone, 6th Edition, Cengage Learning.
- 2. An Introduction to Business Analytics, Ger Koole, MG Books.

Course	Title	INI	OUSTRI (Open	AL SA Elective	M.Tech PS III Sem					
Course	Code	Category	Но	urs/We	ek	Credits	Maxim	um Marl	ks	
1871305		OEC	L	Т	Р	С	C Internal	End Exams	Total	
		3	0	0	3	40	60	100		
	Mid	Exam Duratio	E	nd Exam Duration: 3Hrs						
Course	Objecti	ves:								
		w about Industr nd Wear and C		• •			ls of Maintenan	ce Engine	eering to	
		yze Fault tracki			-		tenance.			
			-				he students wil	l be able	to	
CO 1	Analyz	ze the Industria	l Safety,	Drinkir	ng wate	r layouts, t	fire prevention,	etc		
CO 2	Under	stand the Wear	and Cor	rosion a	nd thei	r Preventio	ons.			
CO 3	Analyz	Analyze faults in machine tools and their general causes.								
CO 4	Under	stand Periodic a	and prev	entive n	nainten	ance				

<u>UNIT I</u>

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

<u>UNIT II</u>

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

<u>UNIT III</u>

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

<u>UNIT IV</u>

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, Electrical motors, Types of faults in machine tools and their general causes.

<u>UNIT V</u>

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance.

Text Books:

- 1. Higgins & Morrow, "Maintenance Engineering Handbook", Da Information Services.
- 2. H. P. Garg, S. Chand and Company, "Maintenance Engineering".
- 3. Audels, "Pump-hydraulic Compressors", Mcgrew Hill Publication.
- 4. Winterkorn, Hans, "Foundation Engineering Handbook", Chapman & Hall London.

Reference Books:

- 1. D.A. Crowl and J.F. Louvar, Chemical Process Safety: Fundamentals with Applications, Prentice Hall, 2011.
- 2. Fawcett H.H and W.S. Wood, Safety and Accident Prevention in Chemical Operations, 2nd Edition, John Wiley and Sons inc.

Course	Title	OPER		IS RESI Elective	M.Tech PS III Sem				
Course	Code	Category	Но	urs/We	ek	Credits	Maximum Marks		
1871306	OEC	L T		Р	С	ContinuousEndInternalExamsAssessmentT		Total	
		3	0	0	3	40	60	100	
	Mid Exam Duration: 2 Hours End Exam Duration: 3Hrs								
Course	•	ves: y various optim	nization '	Techniq	ues for	Decision I	Making.		
Course	Outcon	nes: On succes	sful con	npletion	of this	s course, tl	he students wil	l be able	to
CO 1		ts should ablet and continue	-		e dyna	mic progi	camming to so	olve prob	lems of
CO 2	Studen	ts should able	to app	oly the o	concep	t of non-l	inear programı	ming	
CO 3	Studen	ts should able	to car	ry out s	sensitiv	ity analys	is		
CO 4	Studen	t should able to	o model	the real	world	problem ar	nd simulate it		

UNIT I

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models.

UNIT II

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming.

UNIT III

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT.

UNIT IV

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

UNIT V

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation.

Text Books:

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 4. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010.

Reference Books:

- 1. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008.
- 2. Panner selvam, Operations Research: Prentice Hall of India 2010
- 3. Operations Research: Principles and Applications, G. Srinivasan, PHI.

Course	Title		Г MANA NEERII (Open		M.Tech PS III Sem				
Course	Code	Category	Но	urs/We	ek	Credits	Maxim	um Marl	KS
18713	871307	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	0	0	3	40	60	100
	Mid	Exam Duratio	n: 2 Ho	urs		E	nd Exam Dura	tion: 3H	S
Course (• U	U		s of Proj	ect man	ageme	nt for plan	ning to execution	on of Proje	ects.
Course (Outcon	nes: On succes	sful con	pletion	of this	s course, tl	he students wil	l be able	to
CO 1	Unders	stand project ch	naracteri	stics and	l variou	is stages of	f project.		
CO 2									

<u>UNIT I</u>

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

<u>UNIT II</u>

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non- technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

<u>UNIT III</u>

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector.

<u>UNIT IV</u>

Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis.

<u>UNIT V</u>

Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Text Books:

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting

Reference Books:

- 1. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 2. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co.
- 3. The Engineer's Cost Handbook, Richard E. Westney, P.E, CRC Press.

Course Tit	le COM	POSIT (Open	E MATI Elective		S	M.Tech PS III Sem				
Course Co	de Category	Ho	ours/We	ek	Credits	Maxim	um Marl	KS		
1871308	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
		3	0	0	3	40	60	100		
Mid Exam Duration: 2 HoursEnd Exam Duration: 3Hrs										
• Equi	n student on Comp p students with ki production rules.					0		ents and		
Course Out	comes: On succes	ssful con	npletion	of this	s course, t	he students wil	l be able	to		
CO1 Ide	D1 Identify and understand the behavior of composite materials									
	Apply the choices made for using certain type of composites in certain applications with reference to composite properties.									
CO 3 Ar	alyze the manufac	turing of	f metal r	natrix c	composites	and polymer m	natrix com	posites.		

<u>UNIT I</u>

Introduction: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

<u>UNIT II</u>

Reinforcements: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

<u>UNIT III</u>

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

<u>UNIT IV</u>

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

<u>UNIT V</u>

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

Text Books:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

Reference Books:

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

Course T	itle W	ASTE T (Open	O ENE Elective			M.Tech PS III Sem				
Course C	ode Category	Ho	ours/We	ek	Credits	Maxim	um Marl	KS		
187130	9 OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
		3	0	0	3	40	60	100		
	Mid Exam Durati	on: 2 Ho	urs		E	nd Exam Dura	tion: 3H	S		
Course O	bjectives:				•					
• To	Create awareness i	n student	s of ener	gy con	servation.					
• To	Identify use of diff	erent type	es of Bio	waste	energy res	ources.				
• To	Understand differe	nt types of	of Bio wa	aste ene	ergy conse	rvations.				
• To	detect different wa	ste conse	rvation i	nto dif	ferent form	ns of energy.				
Course O	utcomes: On succe	ssful con	npletion	of this	s course, t	he students wil	l be able	to		
	Jnderstand different		_							
CO 2 E	Estimate the use of bio waste to produce electrical energy.									
CO 3 U	Understand different types of bio waste and its energy conversions.									
CO4 A	Analyze the bio was	te utilizat	ion and	to avoi	d the envir	onmental pollu	tion.			

<u>UNIT I</u>

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

<u>UNIT II</u>

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

<u>UNIT III</u>

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

<u>UNIT IV</u>

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

<u>UNIT V</u>

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

Text Books:

- 1. Biogas Technology- Transfer and Diffusion, M.M. Halwagi, Elsevier.
- 2. C. Y. WereKo-Brobby and E. B. Hagan, "Biomass Conversion and Technology", John Wiley & Sons, 1996.
- 3. Introduction to Biomass Energy Conservations, Sergio Capareda.

Reference Books:

- 1. Desai, Ashok V, "Non Conventional Energy", Wiley Eastern Ltd., 1990.
- 2. Khandelwal, K. C. and Mahdi, S. S, "Biogas Technology A Practical Hand Book" -, Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Challal, D. S., "Food, Feed and Fuel from Biomass", IBH Publishing Co. Pvt. Ltd., 1991.

Course	Title	DISSE	RTAT	ION (PI	HASE-	I)	M.Tech	PS III S	em	
Course	Code	Category	Но	urs/We	ek	Credits	Maxim	um Marl	KS	
18523	310	MAJOR PROJECT	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
				10	100		100			
Internal Assessment										
Course	Objecti	ves:								
•										
Course	Outcon	nes: On success	sful con	pletion	of this	s course, tl	he students wil	l be able	to	
CO 1	Outcomes: On successful completion of this course, the students will be able to Students will learn to survey the relevant literature such as books, national/international refereed journals and contact resource persons for the selected topic of research.									
CO 2	Stude	ents will be able	to use c	lifferent	experi	mental tech	hniques.			
CO 3	Stude	ents will be able	to use c	lifferent	softwa	re/ comput	ational/analytic	cal tools.		
CO4	Stude	ents will be able	to desig	gn and d	evelop	an experin	nental set up/ ec	quipment/	testing.	
CO 5	Students will be able to conduct tests on existing set ups/equipments and draw logical conclusions from the results after analyzing them.									
CO 6	Students will be able to either work in a research environment or in an industrial environment.									

Syllabus Contents:

The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M. Tech. The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.

M.TECH.-IV- SEMESTER SYLLABUS

Course	Title	DISSE	RTATI	ON (PE	IASE-1	I)	M.Tech	PS IV Se	em		
Course	Code	Category	Hours/Week			Credits	Maxim	um Marl	KS		
18524	401	MAJOR PROJECT	L	Т	Р	С	Continuous Internal Assessment	Total			
			0	0	32	16	50	50	100		
	Internal Assessment External Assessment										
Course •	Objecti	ves:									
Course	Outcon	nes: On success	ful con	pletion	of this	course, tl	he students wil	l be able	to		
CO 1		ents will develop al with people w			-	-	l will develop i	nterpersoi	nal skills		
CO 2	to deal with people working in diversified field will.Students will learn to write technical reports and research papers to publish at national and international level.										
CO 3		nts will develop cally qualified a	0		ication	skills to d	efend their wor	k in front	of		

Syllabus Contents:

It is a continuation of Project work started in semester III. He has to submit the report in prescribed format and also present a seminar. The dissertation should be presented in standard format as provided by the department. The candidate has to prepare a detailed project report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up or numerical details as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study. The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a guide, co-guide etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his guide.

AUDIT COURSE-I & II SYLLABUS

Course	Title	ENGLIS	WI	RESEA RITING Course	r	PAPER	M.Tech	Sem	
Course	Code	Category	Ho	·		Maxim	Maximum Marks		
18704	401	Audit Course	L	Т	P C		Continuous Internal Assessment	End Exams Tot	
			2	0	0	0	40		40
	Mid	Exam Duratio	on: 2 Ho	urs					<u> </u>
Course	Objecti	ves:							
• T	Jndersta	and that how to	improve	e your w	riting s	skills and le	evel of readabil	lity	
• I	Learn ab	out what to wr	ite in ead	ch sectio	on -			-	
• [Understa	und the skills n	eeded w	hen writ	ing a T	itle Ensure	the good quali	ty of pape	r at very
f	ärst-time	e submission							
Course	Outcon	nes: On succes	sful con	npletion	of this	s course, tl	he students wil	ll be able	to
CO 1	Unders	stand Writing s	kills and	l level o	f Reada	ability.			
CO 2	Analyz	ze what to writ	e in each	section	•				

<u>UNIT - I</u>

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness.

<u>UNIT - II</u>

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

<u>UNIT - III</u>

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check.

<u>UNIT - IV</u>

key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature

<u>UNIT - V</u>

skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

Reference Book:

- Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books).
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press.
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book.
- 4. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011.

	e Title	DISA	STER M (Audit	IANAG t Course		ЛТ	M.Tech	PSI/IIS			
Course	e Code	Category	y Hours/Week Credits				Maximum Marks				
1870A02		Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			2	0	0	0	40		40		
	Mid	Exam Duratio	on: 2 Ho	urs							
Course	Objecti	ves:									
				n respon			-				
Course	 prac devo rele criti app: hon 	ically evaluate etice from mult elop an unders vance in spec ically understat roaches, plann he country or	e disaster tiple pers tanding o fific type nd the str ing and the coun	risk red spectives of stand es of di rengths program ntries th	uction a s. ards of isasters and we nming wey wo	humanitan and conf aknesses o in different rk in.	itarian response ian response a lict situations. f disaster man nt countries, pa he students wil	and practi agement articularly	ical their		
Course CO 1	 prac deversion rele critian appropriation Outcom 	ically evaluate etice from mult elop an unders vance in spec ically understat roaches, plann he country or nes: On succes	e disaster tiple pers tanding o tific type nd the stu- ing and the count ssful con	risk red spectives of stands es of di rengths program ntries th npletion	uction a s. ards of isasters and we and we nming wey wo of this	humanitat and conf aknesses o in differen rk in. s course, th	rian response a lict situations. f disaster man nt countries, pa	and practi agement articularly II be able	ical their		
	 praction development critical deprime critical deprime development critical development critical development critical development developme	ically evaluate etice from mult elop an unders vance in spec ically understat roaches, plann he country or nes: On succes	e disaster tiple pers tanding o eific type nd the str ing and the cour ssful con	risk red spectives of stands es of di rengths a program ntries th npletion zard, dis	uction a s. ards of isasters and we not we not we not we not we of this sasters	humanitan and conf aknesses o in differen rk in. s course, th and natura	rian response a lict situations. f disaster man nt countries, pa he students wi l	and practi agement articularly II be able	ical their		

<u>UNIT I</u>

Introduction to Disaster: Definition, Factors and Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

<u>UNIT II</u>

Repercussions of Disasters And Hazards: Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

<u>UNIT III</u>

Disaster Prone Areas In India

Study of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics.

<u>UNIT IV</u>

Disaster Preparedness and Management

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

<u>UNIT V</u>

Risk Assessment

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People'sParticipation In Risk Assessment. Strategies for Survival.

Disaster Mitigation

Meaning, Concept and Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

Text Books:

1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'New Royal book Company.

2. Sahni, Pardeep Et.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

Reference Books:

- 1. Fundamentals of Disaster Management, Shekhawat R.S, Bhatnagar Harshul.
- 2. Disaster management, Ruthra, Lakshmi Publications.
- Disaster Management and Preparedness, Nidhi Gauba Dhawan, Ambrina Sardar Khan, CBS Publishers.

Course Title	SANSF		OR TEC VLEDG Course	E	AL	M.Tech	Sem	
Course Code	Category	Ho	Hours/Week			Maxim	um Marl	KS
1870A03	Audit Course			С	Continuous Internal Assessment	End Exams	Total	
		2	0	0	0	40		40
Mid	Exam Duratio	on: 2 Ho	urs			I		<u> </u>
Course Object	ives:							
•Learn •Learn	ing of Sanskrit	to impro to devel	ove brain op the lo	n functi ogic in	ioning.	e scientific lang cs, science & ot	C	e world
	ngineering scho uge knowledge					be able to explore	re	
Course Outcon	nes: On succes	sful con	npletion	of thi	s course, t	he students wil	l be able	to
CO 1 Under	stand Sanskrit	gramma	and Co	mposit	ion.			

CO 2 Ancient Sanskrit literature about science & technology can be understood

CO 3	Being a logical language will help to develop logic in students
UUJ	being a logical language will help to develop logic in students

<u>UNIT I</u>

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences

<u>UNIT III</u>

Order Introduction of roots Technical information about Sanskrit Literature

<u>UNIT III</u>

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

Text Books:

1. Dr. Vishwas, "Abhyaspustakam" - Samskrita-Bharti Publication, New Delhi.

2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication.

3. Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi.

Course	Title	VA	LUE E (Audit	DUCAT Course			M.Tech PS I / II Sem				
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	num Marl	KS		
18704	A04	Audit Course	L	Т	Р	С	Continuous Internal AssessmentEnd ExamsTot				
			2	0	0	0	40		40		
	Mid	Exam Duratio	n: 2 Ho	urs			I	1			
Course	Objecti	ves:									
	• Unc	lerstand value of	of educa	tion and	self- d	evelopmer	nt				
	• Imb	ibe good value	s in stud	lents							
	• Let	the should kno	w about	the imp	ortance	e of charac	ter				
Course	Outcon	nes: On succes	sful con	npletion	of this	s course, tl	he students wi	ll be able	to		
CO 1	Know	edge of self-de	velopme	ent							
CO 2	Learn	the importance	of Hum	an value	es						
CO 3	Develo	oping the overall personality									

<u>UNIT I</u>

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgments

<u>UNIT II</u>

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness.

Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

<u>UNIT III</u>

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking.
Integrity and discipline.
Punctuality, Love and Kindness.
Avoid fault Thinking.
Free from anger, Dignity of labour.
Universal brotherhood and religious tolerance.
True friendship.
Happiness Vs suffering, love for truth.
Aware of self-destructive habits.
Association and Cooperation.
Doing best for saving nature

<u>UNIT IV</u>

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence ,Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

Text Books:

- 1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi.
- 2. John Haffai, Lead on & How to win over worry, World Book Publisher.
- 3. Swami Vivekananda, Call to the Youth for Nation Building, Advaita Ashrama, Calcutta.
- 4. Swami Vivekananda, Youth and Modern India, Rama Krishna Mission, Chennai.

Reference Books:

1. M.G. Chitakra, Education and Human values, A.P.H. Publishing corporation, New Delhi.

Course	Title	CONS	STITUT (Audit	ION Ol Course		Ā	M.Tech	PSI/IIS	Sem		
Course	Code	Category	Ho	ours/We	ek	Credits	Maximum Marks				
18704	A05	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			2 0 0 0		40		40				
	Mid	Exam Duratio	n: 2 Ho	urs			I				
Course	Objecti	ves:									
Course	con of n • To Bol Cor	stitutional role ationhood in th address the shevik Revolu astitution	and entit te early y role of tion in	lement t rears of I sociali 1917 an	o civil a ndian r sm in d its in	and econom nationalism India aff mpact on	ng modern Inc nic rights as wel n. ter the comm the initial draf he students wi	l as the em nencement ting of th	ergence of the e Indian		
CO 1		s the growth o ival of Gandh				ight s in In	idia for the bull	c of Indiar	ns before		
CO 2							of argument th lution in India	at inform	ed the		
CO 3	 conceptualization of sociall reforms leading to revolution in India Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution. 										
CO 4	Discuss the passage of the Hindu Code Bill of 1956										

<u>UNIT I</u>

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working)

Philosophy of the Indian Constitution: Preamble, Salient Features

<u>UNIT II</u>

Contours of Constitutional Rights & Duties:

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

<u>UNIT III</u>

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions.

Executive: President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

<u>UNIT IV</u>

Local Administration:

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.

Pachayati raj: Introduction, PRI: Zila Pachayat. Elected officials and their roles, CEO Zila Pachayat: Position and role.

Block level: Organizational Hierarchy (Different departments),

Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

<u>UNIT V</u>

Election Commission: Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners.

State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Text Books:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Course Title	PI	EDAGO (Audit	GY STU Course			M.Tech PS I / II Sem			
Course Code	Category	Но	urs/We	ek	Credits	Maximum Marks			
1870A06	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		2	0	0	0	40		40	
Mid			•						

Course Objectives:

- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes: On successful completion of this course, the students will be able to

CC)1	What	pedagogical	practices	are	being	used	by	teachers	in	formal	and	informal
		classro	ooms in devel	oping cou	ntrie	s?							

CO 2 What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?

CO 3 How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

<u>UNIT I</u>

Introduction and Methodology:

Aims and rationale, Policy background, Conceptual framework and terminology

Theories of learning, Curriculum, Teacher education.

Conceptual framework, Research questions.

Overview of methodology and Searching.

<u>UNIT II</u>

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries.

Curriculum, Teacher education.

<u>UNIT III</u>

Evidence on the effectiveness of pedagogical practices

Methodology for the in depth stage: quality assessment of included studies.

How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

Theory of change.

Strength and nature of the body of evidence for effective pedagogical practices.

Pedagogic theory and pedagogical approaches.

Teachers' attitudes and beliefs and Pedagogic strategies.

<u>UNIT IV</u>

Professional development: alignment with classroom practices and follow- up support

Peer support

Support from the head teacher and the community.

Curriculum and assessment

Barriers to learning: limited resources and large class sizes

<u>UNIT V</u>

Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.

Text Books:

1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.

2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.

3. Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

Reference Books:

- 1. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 2. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

Web Links:

1. www.pratham.org/images/resource%20working%20paper%202.pdf.

Course Title	STRESS		GEME	M.Tech PS I / II Sem Maximum Marks				
Course Code	Category	Hours/Week					Credits	
1870A07	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		2	0	0	0	40		40
Mid	Exam Duratio	n: 2 Ho	urs	1				
Course Objectiv	/es:							
• To achiev	ve overall healt	h of bod	y and m	ind.				
• To overce	ome stress							
Course Outcon	nes: On succes	sful con	npletior	of thi	s course, tl	he students wi	ll be able	to
CO 1 Develop	p healthy mind	in a hea	lthy boc	ly thus	improving	social health al	lso	
CO 2 Improv	e efficiency.							

<u>UNIT I</u>

Definitions of Eight parts of yog. (Ashtanga)

<u>UNIT II</u>

- Yam and Niyam. Do's and Don't's in life.
- i) Ahinsa, satya, astheya, bramhacharya and aparigraha
- ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

<u>UNIT III</u>

- Asan and Pranayam
 - i)Various yog poses and their benefits for mind & bodyii)Regularization of breathing techniques and its effects- Types of pranayam

Text Books:

1. 'Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal,

Nagpur

- 2. Swami Vivekananda, "Rajayoga or conquering the Internal Nature".
- 3. Advaitashrama (Publication Department), Kolkata.
- 4. Acharya Yatendra, Yoga & Stress Management, Finger Print Publishing.

Course Title	PERSON THROUGH	I LIFE SK		M.Tech PS I / II Sem Maximum Marks				
Course Code 1870A08	Category Audit Course	Hours/Week					Credits	
		L	T	Р	С	Continuous Internal Assessment	End Exams	Total
		2	0	0	0	40		40
Mid	Exam Duratio	n: 2 Ho	urs					
Course Objecti	ves:							
•	achieve the high	ghest go	al happi	ly				
 To becom 	e a person with		nind, ple	asing p	ersonality	and determinat	ion	
		idents						
• To awake								
			npletion	of this	s course, tl	he students wi	ll be able	to
To awake Course Outcor CO 1 Study		s ful con Bhagwad	l-Geeta	will	help the			
To awake Course Outcor CO 1 Study persona	nes: On succes of Shrimad-E	sful con Bhagwad ve the	l-Geeta highest	will goal ii	help the n life	student in	developin	g his
To awakes Course Outcor CO 1 Study persona CO 2 The po	mes: On succes of Shrimad-E ality and achie	sful con Bhagwad ve the	l-Geeta highest	will goal ii	help the n life	student in	developin	g his

Neetisatakam-Holistic development of personality

- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)
- Verses- 52,53,59 (dont's)
- Verses- 71,73,75,78 (do's)

<u>UNIT II</u>

- Approach to day to day work and duties.
- Shrimad Bhagwad Geeta : Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

<u>UNIT III</u>

- Statements of basic knowledge.
- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 Verses 13, 14, 15, 16, 17, 18
- Personality of Role model. Shrimad Bhagwad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 Verses 37,38,63

Text Books:

- 1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath,Rashtriya Sanskrit Sansthanam, New Delhi.
- 3. Enlightenment: Personality Development and management, Sagir Ahmed, Independently Published.